氧化苦参碱通过调节SIRT1/YY1/GPX4轴介导的铁凋亡抑制肝癌进展

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Chemical Research in Toxicology Pub Date : 2025-01-20 Epub Date: 2024-12-27 DOI:10.1021/acs.chemrestox.4c00208
Jing Hu, Fuyi Zhang, Xiaoshan Qin, Xinlei Nong, Xiaoyan Shi, Xihan Zhou, Yueqiu Qin
{"title":"氧化苦参碱通过调节SIRT1/YY1/GPX4轴介导的铁凋亡抑制肝癌进展","authors":"Jing Hu, Fuyi Zhang, Xiaoshan Qin, Xinlei Nong, Xiaoyan Shi, Xihan Zhou, Yueqiu Qin","doi":"10.1021/acs.chemrestox.4c00208","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is regarded as a promising cancer therapeutic target. As a major bioactive compound from traditional Chinese medicine (TCM) herb <i>Sophora flavescens</i> Aiton, oxymatrine (OMT) can depress inflammatory factors, reduce iron deposition, and suppress the hub gene or protein expression involved in ferroptosis and inflammation. Additionally, OMT can control collagen deposition in the liver and has a therapeutic effect on liver cancer. This research investigated the action mechanism of the mechanism of the effect of OMT on the process of liver cancer. OMT triggered cell death and restrained cell proliferation in liver cancer cells, along with downregulated levels of Yin Yang 1 (YY1) and glutathione peroxidase 4 (GPX4) and elevated expression of silent information regulator 1 (SIRT1). Moreover, ferroptosis is the main method leading to OMT-induced liver cancer cell death. OMT-induced ferroptosis was reversed after GPX4 and YY1 overexpression or inhibition of SIRT1. Furthermore, the OMT restrained tumor growth through the SIRT1/YY1/GPX4 axis in liver cancer transplantation models. These results indicated that OMT inhibited cell viability and induced ferroptosis of liver cancer cells, involving the regulatory mechanism of the SIRT1/YY1/GPX4 axis.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"46-57"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxymatrine Inhibits Liver Cancer Progression by Regulating SIRT1/YY1/GPX4 Axis-Mediated Ferroptosis.\",\"authors\":\"Jing Hu, Fuyi Zhang, Xiaoshan Qin, Xinlei Nong, Xiaoyan Shi, Xihan Zhou, Yueqiu Qin\",\"doi\":\"10.1021/acs.chemrestox.4c00208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is regarded as a promising cancer therapeutic target. As a major bioactive compound from traditional Chinese medicine (TCM) herb <i>Sophora flavescens</i> Aiton, oxymatrine (OMT) can depress inflammatory factors, reduce iron deposition, and suppress the hub gene or protein expression involved in ferroptosis and inflammation. Additionally, OMT can control collagen deposition in the liver and has a therapeutic effect on liver cancer. This research investigated the action mechanism of the mechanism of the effect of OMT on the process of liver cancer. OMT triggered cell death and restrained cell proliferation in liver cancer cells, along with downregulated levels of Yin Yang 1 (YY1) and glutathione peroxidase 4 (GPX4) and elevated expression of silent information regulator 1 (SIRT1). Moreover, ferroptosis is the main method leading to OMT-induced liver cancer cell death. OMT-induced ferroptosis was reversed after GPX4 and YY1 overexpression or inhibition of SIRT1. Furthermore, the OMT restrained tumor growth through the SIRT1/YY1/GPX4 axis in liver cancer transplantation models. These results indicated that OMT inhibited cell viability and induced ferroptosis of liver cancer cells, involving the regulatory mechanism of the SIRT1/YY1/GPX4 axis.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\" \",\"pages\":\"46-57\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrestox.4c00208\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00208","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

上睑下垂被认为是一个很有前途的癌症治疗靶点。氧化苦参碱(OMT)是中药苦参中的主要生物活性化合物,具有抑制炎症因子、减少铁沉积、抑制铁下沉和炎症相关枢纽基因或蛋白表达的作用。此外,OMT可以控制肝脏胶原沉积,对肝癌有治疗作用。本研究探讨了OMT在肝癌发生过程中的作用机制。OMT触发肝癌细胞死亡,抑制细胞增殖,下调阴阳1 (YY1)和谷胱甘肽过氧化物酶4 (GPX4)水平,升高沉默信息调节因子1 (SIRT1)表达。此外,铁下垂是导致omt诱导的肝癌细胞死亡的主要方法。GPX4和YY1过表达或SIRT1抑制后,omt诱导的铁下垂得以逆转。此外,在肝癌移植模型中,OMT通过SIRT1/YY1/GPX4轴抑制肿瘤生长。这些结果表明,OMT抑制肝癌细胞活力,诱导肝癌细胞铁凋亡,涉及SIRT1/YY1/GPX4轴的调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxymatrine Inhibits Liver Cancer Progression by Regulating SIRT1/YY1/GPX4 Axis-Mediated Ferroptosis.

Ferroptosis is regarded as a promising cancer therapeutic target. As a major bioactive compound from traditional Chinese medicine (TCM) herb Sophora flavescens Aiton, oxymatrine (OMT) can depress inflammatory factors, reduce iron deposition, and suppress the hub gene or protein expression involved in ferroptosis and inflammation. Additionally, OMT can control collagen deposition in the liver and has a therapeutic effect on liver cancer. This research investigated the action mechanism of the mechanism of the effect of OMT on the process of liver cancer. OMT triggered cell death and restrained cell proliferation in liver cancer cells, along with downregulated levels of Yin Yang 1 (YY1) and glutathione peroxidase 4 (GPX4) and elevated expression of silent information regulator 1 (SIRT1). Moreover, ferroptosis is the main method leading to OMT-induced liver cancer cell death. OMT-induced ferroptosis was reversed after GPX4 and YY1 overexpression or inhibition of SIRT1. Furthermore, the OMT restrained tumor growth through the SIRT1/YY1/GPX4 axis in liver cancer transplantation models. These results indicated that OMT inhibited cell viability and induced ferroptosis of liver cancer cells, involving the regulatory mechanism of the SIRT1/YY1/GPX4 axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信