生成量子动力学映射

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
R. N. Gumerov, R. L. Khazhin
{"title":"生成量子动力学映射","authors":"R. N. Gumerov,&nbsp;R. L. Khazhin","doi":"10.1134/S0040577924120122","DOIUrl":null,"url":null,"abstract":"<p> We consider one-parameter families of generating quantum channels. Such families are called the generating quantum dynamical mappings or the generating quantum processes. By the generating channels of composite quantum systems, we understand the channels that allow the channels of constituent subsystems, called the induced channels, to be uniquely defined. Using the criterion for generating and induced linear mappings, we study the properties of bijective quantum channels and the properties of quantum processes consisting of such channels. Using a generating quantum dynamical mapping, we naturally construct the induced dynamical mapping. We show that the properties of continuity and completely positive divisibility of generating quantum dynamical mappings are hereditary for induced dynamical mappings. As an application of the obtained results, we construct continuous completely positive evolutions. For generating quantum dynamical mappings taking values in the set of phase-damping channels, we obtain a criterion for the completely positive divisibility. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 3","pages":"2177 - 2192"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating quantum dynamical mappings\",\"authors\":\"R. N. Gumerov,&nbsp;R. L. Khazhin\",\"doi\":\"10.1134/S0040577924120122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider one-parameter families of generating quantum channels. Such families are called the generating quantum dynamical mappings or the generating quantum processes. By the generating channels of composite quantum systems, we understand the channels that allow the channels of constituent subsystems, called the induced channels, to be uniquely defined. Using the criterion for generating and induced linear mappings, we study the properties of bijective quantum channels and the properties of quantum processes consisting of such channels. Using a generating quantum dynamical mapping, we naturally construct the induced dynamical mapping. We show that the properties of continuity and completely positive divisibility of generating quantum dynamical mappings are hereditary for induced dynamical mappings. As an application of the obtained results, we construct continuous completely positive evolutions. For generating quantum dynamical mappings taking values in the set of phase-damping channels, we obtain a criterion for the completely positive divisibility. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"221 3\",\"pages\":\"2177 - 2192\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924120122\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924120122","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑产生量子信道的单参数族。这些族被称为生成量子动力学映射或生成量子过程。通过复合量子系统的生成通道,我们了解了允许组成子系统的通道(称为诱导通道)被唯一定义的通道。利用线性映射的生成和诱导准则,研究了双射量子通道的性质和由双射量子通道组成的量子过程的性质。利用生成的量子动态映射,我们自然构造了诱导的动态映射。我们证明了生成量子动力映射的连续性和完全正可整除性对于诱导动力映射是遗传的。作为已获得结果的应用,我们构造了连续的完全正演化。对于产生在相位阻尼通道集合中取值的量子动态映射,我们得到了一个完全正可整除的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating quantum dynamical mappings

We consider one-parameter families of generating quantum channels. Such families are called the generating quantum dynamical mappings or the generating quantum processes. By the generating channels of composite quantum systems, we understand the channels that allow the channels of constituent subsystems, called the induced channels, to be uniquely defined. Using the criterion for generating and induced linear mappings, we study the properties of bijective quantum channels and the properties of quantum processes consisting of such channels. Using a generating quantum dynamical mapping, we naturally construct the induced dynamical mapping. We show that the properties of continuity and completely positive divisibility of generating quantum dynamical mappings are hereditary for induced dynamical mappings. As an application of the obtained results, we construct continuous completely positive evolutions. For generating quantum dynamical mappings taking values in the set of phase-damping channels, we obtain a criterion for the completely positive divisibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信