Jiancheng Chi;Xiaobo Zhou;Fu Xiao;Tie Qiu;C. L. Philip Chen
{"title":"工业物联网中通过广泛学习提高任务卸载的适应性和效率","authors":"Jiancheng Chi;Xiaobo Zhou;Fu Xiao;Tie Qiu;C. L. Philip Chen","doi":"10.1109/TNSE.2024.3493053","DOIUrl":null,"url":null,"abstract":"In the Multi-access Edge Computing (MEC)-based Industrial Internet of Things (IIoT), a key challenge is to make an efficient task-offloading decision. Machine learning methods have emerged as popular solutions to address this issue. However, in IIoT, it is common for the feature distribution of data to change significantly over time, i.e., data drift, and existing machine learning-based schemes struggle to frequent data drift, failing to maintain consistent high accuracy of task-offloading decisions. This struggle arises because they require extended retraining or extensive model adjustments, which involve significant delays and increased computational overhead due to the complex network structure. In this paper, we propose a \n<bold>B</b>\nroad learning-based task \n<bold>OFF</b>\nloading scheme (BOFF). In BOFF, a data drift detection method based on statistical features and a sliding window is established to determine the occurrence of data drift in the system, while utilizing the Gini coefficient to enhance feature extraction and improve accuracy of task-offloading decision model under data drift. When data drift is detected, BOFF leverages its fast training and redeployment capabilities based on feature-enhanced broad learning to update the task offloading model and maintain accuracy. In the absence of significant data drift, minor changes in data distribution are addressed through incremental updates to slow the decline in model accuracy. Numerical results demonstrate that BOFF significantly improves the adaptability of data drift, ensuring high accuracy and efficiency of task offloading in dynamic IIoT environments.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 1","pages":"263-276"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Adaptability and Efficiency of Task Offloading by Broad Learning in Industrial IoT\",\"authors\":\"Jiancheng Chi;Xiaobo Zhou;Fu Xiao;Tie Qiu;C. L. Philip Chen\",\"doi\":\"10.1109/TNSE.2024.3493053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Multi-access Edge Computing (MEC)-based Industrial Internet of Things (IIoT), a key challenge is to make an efficient task-offloading decision. Machine learning methods have emerged as popular solutions to address this issue. However, in IIoT, it is common for the feature distribution of data to change significantly over time, i.e., data drift, and existing machine learning-based schemes struggle to frequent data drift, failing to maintain consistent high accuracy of task-offloading decisions. This struggle arises because they require extended retraining or extensive model adjustments, which involve significant delays and increased computational overhead due to the complex network structure. In this paper, we propose a \\n<bold>B</b>\\nroad learning-based task \\n<bold>OFF</b>\\nloading scheme (BOFF). In BOFF, a data drift detection method based on statistical features and a sliding window is established to determine the occurrence of data drift in the system, while utilizing the Gini coefficient to enhance feature extraction and improve accuracy of task-offloading decision model under data drift. When data drift is detected, BOFF leverages its fast training and redeployment capabilities based on feature-enhanced broad learning to update the task offloading model and maintain accuracy. In the absence of significant data drift, minor changes in data distribution are addressed through incremental updates to slow the decline in model accuracy. Numerical results demonstrate that BOFF significantly improves the adaptability of data drift, ensuring high accuracy and efficiency of task offloading in dynamic IIoT environments.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"12 1\",\"pages\":\"263-276\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10746592/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10746592/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Adaptability and Efficiency of Task Offloading by Broad Learning in Industrial IoT
In the Multi-access Edge Computing (MEC)-based Industrial Internet of Things (IIoT), a key challenge is to make an efficient task-offloading decision. Machine learning methods have emerged as popular solutions to address this issue. However, in IIoT, it is common for the feature distribution of data to change significantly over time, i.e., data drift, and existing machine learning-based schemes struggle to frequent data drift, failing to maintain consistent high accuracy of task-offloading decisions. This struggle arises because they require extended retraining or extensive model adjustments, which involve significant delays and increased computational overhead due to the complex network structure. In this paper, we propose a
B
road learning-based task
OFF
loading scheme (BOFF). In BOFF, a data drift detection method based on statistical features and a sliding window is established to determine the occurrence of data drift in the system, while utilizing the Gini coefficient to enhance feature extraction and improve accuracy of task-offloading decision model under data drift. When data drift is detected, BOFF leverages its fast training and redeployment capabilities based on feature-enhanced broad learning to update the task offloading model and maintain accuracy. In the absence of significant data drift, minor changes in data distribution are addressed through incremental updates to slow the decline in model accuracy. Numerical results demonstrate that BOFF significantly improves the adaptability of data drift, ensuring high accuracy and efficiency of task offloading in dynamic IIoT environments.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.