基于irs的B5G网络总速率最大化阶段合作框架

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Haleema Sadia;Ahmad Kamal Hassan;Ziaul Haq Abbas;Ghulam Abbas;John M. Cioffi
{"title":"基于irs的B5G网络总速率最大化阶段合作框架","authors":"Haleema Sadia;Ahmad Kamal Hassan;Ziaul Haq Abbas;Ghulam Abbas;John M. Cioffi","doi":"10.1109/TNSE.2024.3486733","DOIUrl":null,"url":null,"abstract":"Intelligent reflecting surfaces (IRSs) improves beyond fifth generation (B5G) systems performance in power- and cost-efficient ways. However, maintaining the performance of multiple IRSs-enabled networks without constraining available resources is challenging. In this paper, we propose a novel IRS-assisted phase cooperative framework to maximize the sum rate of the secondary phase cooperative system (\n<inline-formula><tex-math>$\\mathbf {SPC}_{\\mathcal {S}ys}$</tex-math></inline-formula>\n) located in close proximity of the primary phase cooperative system (\n<inline-formula><tex-math>$\\mathbf {PPC}_{\\mathcal {S}ys}$</tex-math></inline-formula>\n). We exploit transmit beamforming (BF) at base stations (BSs) and phase shift optimization at the IRS with effective phase cooperation between BSs. The maximization problem turns out to be NP-hard, so an alternating optimization is solved for the \n<inline-formula><tex-math>$\\mathbf {PPC}_{\\mathcal {S}ys}$</tex-math></inline-formula>\n using an exhaustive search method, i.e., the branch-reduce-and-bound (BRB) algorithm, to obtain the optimal solution for active beamformers, and phase optimization is performed using the semidefinite relaxation (SDR) approach. Further, an active BF is carried out at the \n<inline-formula><tex-math>$\\mathbf {SPC}_{\\mathcal {S}ys}$</tex-math></inline-formula>\n transmitter by utilizing optimal phase shifts of the \n<inline-formula><tex-math>$\\mathbf {PPC}_{\\mathcal {S}ys}$</tex-math></inline-formula>\n. For the proposed framework, the performance of the BRB algorithm is compared with sub-optimal heuristic BF approaches, including transmit minimum-mean-square-error, zero-forcing BF, and maximum-ratio-transmission. The results support the benefits of deploying IRS in wireless networks to improve sum rate performance of \n<inline-formula><tex-math>$\\mathbf {SPC}_{\\mathcal {S}ys}$</tex-math></inline-formula>\n through effective phase cooperation. The proposed framework significantly reduces the hardware cost of the system without constraining the resources of \n<inline-formula><tex-math>$\\mathbf {PPC}_{\\mathcal {S}ys}$</tex-math></inline-formula>\n.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 1","pages":"134-144"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An IRS-Enabled Phase Cooperative Framework for Sum Rate Maximization in B5G Networks\",\"authors\":\"Haleema Sadia;Ahmad Kamal Hassan;Ziaul Haq Abbas;Ghulam Abbas;John M. Cioffi\",\"doi\":\"10.1109/TNSE.2024.3486733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent reflecting surfaces (IRSs) improves beyond fifth generation (B5G) systems performance in power- and cost-efficient ways. However, maintaining the performance of multiple IRSs-enabled networks without constraining available resources is challenging. In this paper, we propose a novel IRS-assisted phase cooperative framework to maximize the sum rate of the secondary phase cooperative system (\\n<inline-formula><tex-math>$\\\\mathbf {SPC}_{\\\\mathcal {S}ys}$</tex-math></inline-formula>\\n) located in close proximity of the primary phase cooperative system (\\n<inline-formula><tex-math>$\\\\mathbf {PPC}_{\\\\mathcal {S}ys}$</tex-math></inline-formula>\\n). We exploit transmit beamforming (BF) at base stations (BSs) and phase shift optimization at the IRS with effective phase cooperation between BSs. The maximization problem turns out to be NP-hard, so an alternating optimization is solved for the \\n<inline-formula><tex-math>$\\\\mathbf {PPC}_{\\\\mathcal {S}ys}$</tex-math></inline-formula>\\n using an exhaustive search method, i.e., the branch-reduce-and-bound (BRB) algorithm, to obtain the optimal solution for active beamformers, and phase optimization is performed using the semidefinite relaxation (SDR) approach. Further, an active BF is carried out at the \\n<inline-formula><tex-math>$\\\\mathbf {SPC}_{\\\\mathcal {S}ys}$</tex-math></inline-formula>\\n transmitter by utilizing optimal phase shifts of the \\n<inline-formula><tex-math>$\\\\mathbf {PPC}_{\\\\mathcal {S}ys}$</tex-math></inline-formula>\\n. For the proposed framework, the performance of the BRB algorithm is compared with sub-optimal heuristic BF approaches, including transmit minimum-mean-square-error, zero-forcing BF, and maximum-ratio-transmission. The results support the benefits of deploying IRS in wireless networks to improve sum rate performance of \\n<inline-formula><tex-math>$\\\\mathbf {SPC}_{\\\\mathcal {S}ys}$</tex-math></inline-formula>\\n through effective phase cooperation. The proposed framework significantly reduces the hardware cost of the system without constraining the resources of \\n<inline-formula><tex-math>$\\\\mathbf {PPC}_{\\\\mathcal {S}ys}$</tex-math></inline-formula>\\n.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"12 1\",\"pages\":\"134-144\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745159/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745159/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

智能反射面(IRSs)在功率和成本效益方面超越了第五代(B5G)系统的性能。然而,在不限制可用资源的情况下维护多个支持irss的网络的性能是具有挑战性的。在本文中,我们提出了一种新的irs辅助相位协作框架,以最大化位于初级相位协作系统($\mathbf {PPC}_{\mathcal {S}ys}$)附近的次级相位协作系统($\mathbf {SPC}_{\mathcal {S}ys}$)的和率。我们利用发射波束形成(BF)在基站(BSs)和相移优化在IRS与BSs之间有效的相位合作。结果表明,最大化问题是np困难的,因此采用穷举搜索方法,即分支约界(BRB)算法,对$\mathbf {PPC}_{\mathcal {S}ys}$进行交替优化,得到有源波束形成器的最优解,并采用半定松弛(SDR)方法进行相位优化。此外,利用$\mathbf {PPC}_{\mathcal {S}ys}$的最优相移,在$\mathbf {SPC}_{\mathcal {S}ys}$发射机处进行有源BF。针对所提出的框架,将BRB算法的性能与次优启发式BF方法进行了比较,包括传输最小均方误差、零强制BF和最大比率传输。结果支持在无线网络中部署IRS的好处,通过有效的相位合作来提高$\mathbf {SPC}_{\mathcal {S}ys}$的和速率性能。该框架在不限制$\mathbf {PPC}_{\mathcal {S}ys}$资源的情况下,显著降低了系统的硬件成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An IRS-Enabled Phase Cooperative Framework for Sum Rate Maximization in B5G Networks
Intelligent reflecting surfaces (IRSs) improves beyond fifth generation (B5G) systems performance in power- and cost-efficient ways. However, maintaining the performance of multiple IRSs-enabled networks without constraining available resources is challenging. In this paper, we propose a novel IRS-assisted phase cooperative framework to maximize the sum rate of the secondary phase cooperative system ( $\mathbf {SPC}_{\mathcal {S}ys}$ ) located in close proximity of the primary phase cooperative system ( $\mathbf {PPC}_{\mathcal {S}ys}$ ). We exploit transmit beamforming (BF) at base stations (BSs) and phase shift optimization at the IRS with effective phase cooperation between BSs. The maximization problem turns out to be NP-hard, so an alternating optimization is solved for the $\mathbf {PPC}_{\mathcal {S}ys}$ using an exhaustive search method, i.e., the branch-reduce-and-bound (BRB) algorithm, to obtain the optimal solution for active beamformers, and phase optimization is performed using the semidefinite relaxation (SDR) approach. Further, an active BF is carried out at the $\mathbf {SPC}_{\mathcal {S}ys}$ transmitter by utilizing optimal phase shifts of the $\mathbf {PPC}_{\mathcal {S}ys}$ . For the proposed framework, the performance of the BRB algorithm is compared with sub-optimal heuristic BF approaches, including transmit minimum-mean-square-error, zero-forcing BF, and maximum-ratio-transmission. The results support the benefits of deploying IRS in wireless networks to improve sum rate performance of $\mathbf {SPC}_{\mathcal {S}ys}$ through effective phase cooperation. The proposed framework significantly reduces the hardware cost of the system without constraining the resources of $\mathbf {PPC}_{\mathcal {S}ys}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信