流行受限SIRS流行疫苗接种的最优性

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Jiacheng Chen, Kexin Feng, Lorenzo Freddi, Dan Goreac, Juan Li
{"title":"流行受限SIRS流行疫苗接种的最优性","authors":"Jiacheng Chen,&nbsp;Kexin Feng,&nbsp;Lorenzo Freddi,&nbsp;Dan Goreac,&nbsp;Juan Li","doi":"10.1007/s00245-024-10212-8","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the present paper is to investigate the optimal vaccination policies with prevalence restrictions in an SIRS demographic model. We provide a well-posedness result for the system and give a thorough description of safety zones (immunity and feasible) when intensive care units (ICU) restrictions are enforced on the prevalence. Using Pontryagin’s principle for state-constrained dynamics we show that the optimal vaccination policy is of bang–bang type and give further specifics on the precise structure. The paper is intended as a counter-part to Avram et al. (Appl Math Comput 418:126816, 2022) where non-pharmaceutical interventions have been considered.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality of Vaccination for Prevalence-Constrained SIRS Epidemics\",\"authors\":\"Jiacheng Chen,&nbsp;Kexin Feng,&nbsp;Lorenzo Freddi,&nbsp;Dan Goreac,&nbsp;Juan Li\",\"doi\":\"10.1007/s00245-024-10212-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of the present paper is to investigate the optimal vaccination policies with prevalence restrictions in an SIRS demographic model. We provide a well-posedness result for the system and give a thorough description of safety zones (immunity and feasible) when intensive care units (ICU) restrictions are enforced on the prevalence. Using Pontryagin’s principle for state-constrained dynamics we show that the optimal vaccination policy is of bang–bang type and give further specifics on the precise structure. The paper is intended as a counter-part to Avram et al. (Appl Math Comput 418:126816, 2022) where non-pharmaceutical interventions have been considered.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10212-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10212-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是在SIRS人口统计模型中研究具有流行率限制的最佳疫苗接种政策。我们为该系统提供了适位性结果,并给出了在重症监护病房(ICU)实施流行限制时的安全区域(免疫和可行)的详细描述。利用状态约束动力学的庞特里亚金原理,我们证明了最优疫苗接种策略是bang-bang型的,并进一步给出了精确结构的细节。该论文旨在作为Avram等人(应用数学计算418:126816,2022)的对应部分,其中考虑了非药物干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality of Vaccination for Prevalence-Constrained SIRS Epidemics

The aim of the present paper is to investigate the optimal vaccination policies with prevalence restrictions in an SIRS demographic model. We provide a well-posedness result for the system and give a thorough description of safety zones (immunity and feasible) when intensive care units (ICU) restrictions are enforced on the prevalence. Using Pontryagin’s principle for state-constrained dynamics we show that the optimal vaccination policy is of bang–bang type and give further specifics on the precise structure. The paper is intended as a counter-part to Avram et al. (Appl Math Comput 418:126816, 2022) where non-pharmaceutical interventions have been considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信