非对称边界条件下聚焦Hirota方程的逆散射变换

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Chunjiang Wang, Jian Zhang
{"title":"非对称边界条件下聚焦Hirota方程的逆散射变换","authors":"Chunjiang Wang,&nbsp;Jian Zhang","doi":"10.1134/S0040577924120079","DOIUrl":null,"url":null,"abstract":"<p> We formulate an inverse scattering transformation for the focusing Hirota equation with asymmetric boundary conditions, which means that the limit values of the solution at spatial infinities have different amplitudes. For the direct problem, we do not use Riemann surfaces, but instead analyze the branching properties of the scattering problem eigenvalues. The Jost eigenfunctions and scattering coefficients are defined as single-valued functions on the complex plane, and their analyticity properties, symmetries, and asymptotics are obtained, which are helpful in constructing the corresponding Riemann–Hilbert problem. On an open contour, the inverse problem is described by a Riemann–Hilbert problem with double poles. Finally, for comparison purposes, we consider the initial value problem with one-sided nonzero boundary conditions and obtain the formulation of the inverse scattering transform by using Riemann surfaces. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 3","pages":"2109 - 2131"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse scattering transform for the focusing Hirota equation with asymmetric boundary conditions\",\"authors\":\"Chunjiang Wang,&nbsp;Jian Zhang\",\"doi\":\"10.1134/S0040577924120079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We formulate an inverse scattering transformation for the focusing Hirota equation with asymmetric boundary conditions, which means that the limit values of the solution at spatial infinities have different amplitudes. For the direct problem, we do not use Riemann surfaces, but instead analyze the branching properties of the scattering problem eigenvalues. The Jost eigenfunctions and scattering coefficients are defined as single-valued functions on the complex plane, and their analyticity properties, symmetries, and asymptotics are obtained, which are helpful in constructing the corresponding Riemann–Hilbert problem. On an open contour, the inverse problem is described by a Riemann–Hilbert problem with double poles. Finally, for comparison purposes, we consider the initial value problem with one-sided nonzero boundary conditions and obtain the formulation of the inverse scattering transform by using Riemann surfaces. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"221 3\",\"pages\":\"2109 - 2131\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924120079\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924120079","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们对具有非对称边界条件的聚焦Hirota方程进行了逆散射变换,这意味着该方程在空间无穷远处的解的极限值具有不同的振幅。对于直接问题,我们不使用黎曼曲面,而是分析散射问题特征值的分支性质。将Jost特征函数和散射系数定义为复平面上的单值函数,得到了它们的解析性、对称性和渐近性,有助于构造相应的Riemann-Hilbert问题。在开轮廓上,用双极黎曼-希尔伯特问题来描述逆问题。最后,为了比较,我们考虑了单侧非零边界条件下的初值问题,并利用黎曼曲面得到了散射逆变换的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse scattering transform for the focusing Hirota equation with asymmetric boundary conditions

We formulate an inverse scattering transformation for the focusing Hirota equation with asymmetric boundary conditions, which means that the limit values of the solution at spatial infinities have different amplitudes. For the direct problem, we do not use Riemann surfaces, but instead analyze the branching properties of the scattering problem eigenvalues. The Jost eigenfunctions and scattering coefficients are defined as single-valued functions on the complex plane, and their analyticity properties, symmetries, and asymptotics are obtained, which are helpful in constructing the corresponding Riemann–Hilbert problem. On an open contour, the inverse problem is described by a Riemann–Hilbert problem with double poles. Finally, for comparison purposes, we consider the initial value problem with one-sided nonzero boundary conditions and obtain the formulation of the inverse scattering transform by using Riemann surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信