{"title":"非对称边界条件下聚焦Hirota方程的逆散射变换","authors":"Chunjiang Wang, Jian Zhang","doi":"10.1134/S0040577924120079","DOIUrl":null,"url":null,"abstract":"<p> We formulate an inverse scattering transformation for the focusing Hirota equation with asymmetric boundary conditions, which means that the limit values of the solution at spatial infinities have different amplitudes. For the direct problem, we do not use Riemann surfaces, but instead analyze the branching properties of the scattering problem eigenvalues. The Jost eigenfunctions and scattering coefficients are defined as single-valued functions on the complex plane, and their analyticity properties, symmetries, and asymptotics are obtained, which are helpful in constructing the corresponding Riemann–Hilbert problem. On an open contour, the inverse problem is described by a Riemann–Hilbert problem with double poles. Finally, for comparison purposes, we consider the initial value problem with one-sided nonzero boundary conditions and obtain the formulation of the inverse scattering transform by using Riemann surfaces. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 3","pages":"2109 - 2131"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse scattering transform for the focusing Hirota equation with asymmetric boundary conditions\",\"authors\":\"Chunjiang Wang, Jian Zhang\",\"doi\":\"10.1134/S0040577924120079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We formulate an inverse scattering transformation for the focusing Hirota equation with asymmetric boundary conditions, which means that the limit values of the solution at spatial infinities have different amplitudes. For the direct problem, we do not use Riemann surfaces, but instead analyze the branching properties of the scattering problem eigenvalues. The Jost eigenfunctions and scattering coefficients are defined as single-valued functions on the complex plane, and their analyticity properties, symmetries, and asymptotics are obtained, which are helpful in constructing the corresponding Riemann–Hilbert problem. On an open contour, the inverse problem is described by a Riemann–Hilbert problem with double poles. Finally, for comparison purposes, we consider the initial value problem with one-sided nonzero boundary conditions and obtain the formulation of the inverse scattering transform by using Riemann surfaces. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"221 3\",\"pages\":\"2109 - 2131\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924120079\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924120079","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Inverse scattering transform for the focusing Hirota equation with asymmetric boundary conditions
We formulate an inverse scattering transformation for the focusing Hirota equation with asymmetric boundary conditions, which means that the limit values of the solution at spatial infinities have different amplitudes. For the direct problem, we do not use Riemann surfaces, but instead analyze the branching properties of the scattering problem eigenvalues. The Jost eigenfunctions and scattering coefficients are defined as single-valued functions on the complex plane, and their analyticity properties, symmetries, and asymptotics are obtained, which are helpful in constructing the corresponding Riemann–Hilbert problem. On an open contour, the inverse problem is described by a Riemann–Hilbert problem with double poles. Finally, for comparison purposes, we consider the initial value problem with one-sided nonzero boundary conditions and obtain the formulation of the inverse scattering transform by using Riemann surfaces.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.