\(B, C, D\) Toda链的rujsenaars对偶性

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Ivan Sechin, Mikhail Vasilev
{"title":"\\(B, C, D\\) Toda链的rujsenaars对偶性","authors":"Ivan Sechin,&nbsp;Mikhail Vasilev","doi":"10.1007/s11005-024-01890-0","DOIUrl":null,"url":null,"abstract":"<div><p>We use the Hamiltonian reduction method to construct the Ruijsenaars dual systems to generalized Toda chains associated with the classical Lie algebras of types <span>\\(B, C, D\\)</span>. The dual systems turn out to be the <i>B</i>, <i>C</i> and <i>D</i> analogues of the rational goldfish model, which is, as in the type <i>A</i> case, the strong coupling limit of rational Ruijsenaars systems. We explain how both types of systems emerge in the reduction of the cotangent bundle of a Lie group and provide the formulae for dual Hamiltonians. We compute explicitly the higher Hamiltonians of goldfish models using the Cauchy–Binet theorem.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ruijsenaars duality for \\\\(B, C, D\\\\) Toda chains\",\"authors\":\"Ivan Sechin,&nbsp;Mikhail Vasilev\",\"doi\":\"10.1007/s11005-024-01890-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use the Hamiltonian reduction method to construct the Ruijsenaars dual systems to generalized Toda chains associated with the classical Lie algebras of types <span>\\\\(B, C, D\\\\)</span>. The dual systems turn out to be the <i>B</i>, <i>C</i> and <i>D</i> analogues of the rational goldfish model, which is, as in the type <i>A</i> case, the strong coupling limit of rational Ruijsenaars systems. We explain how both types of systems emerge in the reduction of the cotangent bundle of a Lie group and provide the formulae for dual Hamiltonians. We compute explicitly the higher Hamiltonians of goldfish models using the Cauchy–Binet theorem.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01890-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01890-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用哈密顿约简方法构造了一类广义Toda链的rujsenaars对偶系统,该对偶系统与类型为\(B, C, D\)的经典李代数相关。对偶系统是理性金鱼模型的B、C和D类似物,与A类情况一样,是理性rujsenaars系统的强耦合极限。我们解释了这两种类型的系统是如何在李群的协切束约简中出现的,并给出了对偶哈密顿量的公式。我们利用柯西-比奈定理显式地计算了金鱼模型的高哈密顿量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ruijsenaars duality for \(B, C, D\) Toda chains

We use the Hamiltonian reduction method to construct the Ruijsenaars dual systems to generalized Toda chains associated with the classical Lie algebras of types \(B, C, D\). The dual systems turn out to be the BC and D analogues of the rational goldfish model, which is, as in the type A case, the strong coupling limit of rational Ruijsenaars systems. We explain how both types of systems emerge in the reduction of the cotangent bundle of a Lie group and provide the formulae for dual Hamiltonians. We compute explicitly the higher Hamiltonians of goldfish models using the Cauchy–Binet theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信