距离边缘监测装置的容错性

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chenxu Yang, Yaping Mao, Ralf Klasing, Gang Yang, Yuzhi Xiao, Xiaoyan Zhang
{"title":"距离边缘监测装置的容错性","authors":"Chenxu Yang,&nbsp;Yaping Mao,&nbsp;Ralf Klasing,&nbsp;Gang Yang,&nbsp;Yuzhi Xiao,&nbsp;Xiaoyan Zhang","doi":"10.1007/s00236-024-00476-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a connected graph. For an edge <span>\\(e=xy \\in E(G)\\)</span>, <i>e</i> is monitored by a vertex <i>v</i> if <span>\\(d_G(v, y)\\ne d_{G-e}(v, y)\\)</span> or <span>\\(d_G(v, x)\\ne d_{G-e}(v, x)\\)</span>. A set <i>M</i> of vertices of a graph <i>G</i> is distance-edge-monitoring (DEM for short) set if every edge <i>e</i> of <i>G</i> is monitored by some vertex of <i>M</i>. A DEM set <i>X</i> for a graph <i>G</i> is called fault-tolerant DEM set if <span>\\(X\\setminus \\{v\\}\\)</span> is also DEM set for each <i>v</i> in <i>X</i>. Denote <span>\\(\\operatorname {dem}(G)\\)</span> and <span>\\(\\operatorname {Fdem}(G)\\)</span> the smallest size of DEM set and fault-tolerant DEM sets, respectively. In this paper, we first study the relation between <span>\\(\\operatorname {Fdem}(G)\\)</span> and <span>\\(\\operatorname {dem}(G)\\)</span> for a graph <i>G</i>. Next, we show that <span>\\(2 \\le \\operatorname {Fdem}(G) \\le n\\)</span> for any graph <i>G</i> with order <i>n</i>. Furthermore, the extremal graphs attaining lower and upper bounds are characterized. In the end, the exact values for some networks are given. Furthermore, it is shown that for <span>\\(2\\le s&lt;t\\le n\\)</span>, there exists a graph <i>G</i> of order <i>n</i> such that <span>\\(\\operatorname {dem}(G)=s\\)</span> and <span>\\(\\operatorname {Fdem}(G)=t\\)</span>.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"62 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault-tolerance in distance-edge-monitoring sets\",\"authors\":\"Chenxu Yang,&nbsp;Yaping Mao,&nbsp;Ralf Klasing,&nbsp;Gang Yang,&nbsp;Yuzhi Xiao,&nbsp;Xiaoyan Zhang\",\"doi\":\"10.1007/s00236-024-00476-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a connected graph. For an edge <span>\\\\(e=xy \\\\in E(G)\\\\)</span>, <i>e</i> is monitored by a vertex <i>v</i> if <span>\\\\(d_G(v, y)\\\\ne d_{G-e}(v, y)\\\\)</span> or <span>\\\\(d_G(v, x)\\\\ne d_{G-e}(v, x)\\\\)</span>. A set <i>M</i> of vertices of a graph <i>G</i> is distance-edge-monitoring (DEM for short) set if every edge <i>e</i> of <i>G</i> is monitored by some vertex of <i>M</i>. A DEM set <i>X</i> for a graph <i>G</i> is called fault-tolerant DEM set if <span>\\\\(X\\\\setminus \\\\{v\\\\}\\\\)</span> is also DEM set for each <i>v</i> in <i>X</i>. Denote <span>\\\\(\\\\operatorname {dem}(G)\\\\)</span> and <span>\\\\(\\\\operatorname {Fdem}(G)\\\\)</span> the smallest size of DEM set and fault-tolerant DEM sets, respectively. In this paper, we first study the relation between <span>\\\\(\\\\operatorname {Fdem}(G)\\\\)</span> and <span>\\\\(\\\\operatorname {dem}(G)\\\\)</span> for a graph <i>G</i>. Next, we show that <span>\\\\(2 \\\\le \\\\operatorname {Fdem}(G) \\\\le n\\\\)</span> for any graph <i>G</i> with order <i>n</i>. Furthermore, the extremal graphs attaining lower and upper bounds are characterized. In the end, the exact values for some networks are given. Furthermore, it is shown that for <span>\\\\(2\\\\le s&lt;t\\\\le n\\\\)</span>, there exists a graph <i>G</i> of order <i>n</i> such that <span>\\\\(\\\\operatorname {dem}(G)=s\\\\)</span> and <span>\\\\(\\\\operatorname {Fdem}(G)=t\\\\)</span>.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-024-00476-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-024-00476-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

设G是连通图。对于边\(e=xy \in E(G)\),如果\(d_G(v, y)\ne d_{G-e}(v, y)\)或\(d_G(v, x)\ne d_{G-e}(v, x)\), e由顶点v监视。如果图G的每条边e都受到M的某个顶点的监视,则图G的M个顶点集称为距离边监测集(distance-edge-monitoring,简称DEM)。如果\(X\setminus \{v\}\)也是X中每个v的DEM集,则图G的DEM集X称为容错DEM集,分别取DEM集和容错DEM集的最小大小\(\operatorname {dem}(G)\)和\(\operatorname {Fdem}(G)\)。本文首先研究了图G的\(\operatorname {Fdem}(G)\)与\(\operatorname {dem}(G)\)之间的关系,然后证明了任意n阶图G的\(2 \le \operatorname {Fdem}(G) \le n\)与之间的关系,并进一步刻画了达到下界和上界的极值图。最后,给出了某些网络的精确值。进一步证明,对于\(2\le s<t\le n\),存在一个n阶的图G,使得\(\operatorname {dem}(G)=s\)和\(\operatorname {Fdem}(G)=t\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault-tolerance in distance-edge-monitoring sets

Let G be a connected graph. For an edge \(e=xy \in E(G)\), e is monitored by a vertex v if \(d_G(v, y)\ne d_{G-e}(v, y)\) or \(d_G(v, x)\ne d_{G-e}(v, x)\). A set M of vertices of a graph G is distance-edge-monitoring (DEM for short) set if every edge e of G is monitored by some vertex of M. A DEM set X for a graph G is called fault-tolerant DEM set if \(X\setminus \{v\}\) is also DEM set for each v in X. Denote \(\operatorname {dem}(G)\) and \(\operatorname {Fdem}(G)\) the smallest size of DEM set and fault-tolerant DEM sets, respectively. In this paper, we first study the relation between \(\operatorname {Fdem}(G)\) and \(\operatorname {dem}(G)\) for a graph G. Next, we show that \(2 \le \operatorname {Fdem}(G) \le n\) for any graph G with order n. Furthermore, the extremal graphs attaining lower and upper bounds are characterized. In the end, the exact values for some networks are given. Furthermore, it is shown that for \(2\le s<t\le n\), there exists a graph G of order n such that \(\operatorname {dem}(G)=s\) and \(\operatorname {Fdem}(G)=t\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Informatica
Acta Informatica 工程技术-计算机:信息系统
CiteScore
2.40
自引率
16.70%
发文量
24
审稿时长
>12 weeks
期刊介绍: Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics. Topics of interest include: • semantics of programming languages • models and modeling languages for concurrent, distributed, reactive and mobile systems • models and modeling languages for timed, hybrid and probabilistic systems • specification, program analysis and verification • model checking and theorem proving • modal, temporal, first- and higher-order logics, and their variants • constraint logic, SAT/SMT-solving techniques • theoretical aspects of databases, semi-structured data and finite model theory • theoretical aspects of artificial intelligence, knowledge representation, description logic • automata theory, formal languages, term and graph rewriting • game-based models, synthesis • type theory, typed calculi • algebraic, coalgebraic and categorical methods • formal aspects of performance, dependability and reliability analysis • foundations of information and network security • parallel, distributed and randomized algorithms • design and analysis of algorithms • foundations of network and communication protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信