{"title":"新型五自由度三角型并联机器人的运动学分析","authors":"A. V. Antonov, P. A. Laryushkin, A. S. Fomin","doi":"10.1134/S0025654424603355","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, various Delta-type robots are widely used in many technological fields. In this work, we propose a novel 5-DOF Delta-type parallel robot with four linear and one rotational actuators. The major part of the article is devoted to the kinematic analysis of the robot, including solving its inverse and forward kinematic problems. To demonstrate the developed techniques, we consider two numerical examples. In the first one, we solve the inverse kinematics and determine the actuator displacements required to realize a spatial trajectory of the output link. The forward kinematic analysis, presented in the second example, results in six different assembly modes of the robot for the given set of the actuator displacements. The proposed algorithms represent the basis for subsequent velocity, acceleration, and dynamic analysis of the robot, and they can be adapted to other Delta-type parallel robots.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 4","pages":"1920 - 1929"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic Analysis of a Novel 5-DOF Delta-type Parallel Robot\",\"authors\":\"A. V. Antonov, P. A. Laryushkin, A. S. Fomin\",\"doi\":\"10.1134/S0025654424603355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, various Delta-type robots are widely used in many technological fields. In this work, we propose a novel 5-DOF Delta-type parallel robot with four linear and one rotational actuators. The major part of the article is devoted to the kinematic analysis of the robot, including solving its inverse and forward kinematic problems. To demonstrate the developed techniques, we consider two numerical examples. In the first one, we solve the inverse kinematics and determine the actuator displacements required to realize a spatial trajectory of the output link. The forward kinematic analysis, presented in the second example, results in six different assembly modes of the robot for the given set of the actuator displacements. The proposed algorithms represent the basis for subsequent velocity, acceleration, and dynamic analysis of the robot, and they can be adapted to other Delta-type parallel robots.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"59 4\",\"pages\":\"1920 - 1929\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654424603355\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603355","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Kinematic Analysis of a Novel 5-DOF Delta-type Parallel Robot
Nowadays, various Delta-type robots are widely used in many technological fields. In this work, we propose a novel 5-DOF Delta-type parallel robot with four linear and one rotational actuators. The major part of the article is devoted to the kinematic analysis of the robot, including solving its inverse and forward kinematic problems. To demonstrate the developed techniques, we consider two numerical examples. In the first one, we solve the inverse kinematics and determine the actuator displacements required to realize a spatial trajectory of the output link. The forward kinematic analysis, presented in the second example, results in six different assembly modes of the robot for the given set of the actuator displacements. The proposed algorithms represent the basis for subsequent velocity, acceleration, and dynamic analysis of the robot, and they can be adapted to other Delta-type parallel robots.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.