298 K常压下液态糠醛的结构和热物理特性

IF 1.2 4区 化学 Q4 CHEMISTRY, INORGANIC & NUCLEAR
A. V. Teplukhin
{"title":"298 K常压下液态糠醛的结构和热物理特性","authors":"A. V. Teplukhin","doi":"10.1134/S0022476624120084","DOIUrl":null,"url":null,"abstract":"<p>An all-atom model of the furfural molecule is proposed. The model is a system of two formally independent configurationally rigid fragments linked by a single covalent bond with a limited range of deformations. Using this model, structural and thermophysical characteristics (density, heat of evaporation, specific isobaric heat capacity, coefficients of isothermal compressibility and volumetric thermal expansion, dielectric constant) of liquid furfural at 298 K under atmospheric pressure are calculated by the Monte Carlo method. It is established that the fraction of <i>trans</i>-conformers at 298 K is 84.5% in the gas phase and as low as 32.3% in the liquid phase. The analysis of instantaneous and vibrationally averaged structures of the simulated system shows that the fraction of molecules participating in the formation of stack-type associates is 15-16%.</p>","PeriodicalId":668,"journal":{"name":"Journal of Structural Chemistry","volume":"65 12","pages":"2438 - 2448"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and Thermophysical Characteristics of Liquid Furfural at 298 K under Atmospheric Pressure\",\"authors\":\"A. V. Teplukhin\",\"doi\":\"10.1134/S0022476624120084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An all-atom model of the furfural molecule is proposed. The model is a system of two formally independent configurationally rigid fragments linked by a single covalent bond with a limited range of deformations. Using this model, structural and thermophysical characteristics (density, heat of evaporation, specific isobaric heat capacity, coefficients of isothermal compressibility and volumetric thermal expansion, dielectric constant) of liquid furfural at 298 K under atmospheric pressure are calculated by the Monte Carlo method. It is established that the fraction of <i>trans</i>-conformers at 298 K is 84.5% in the gas phase and as low as 32.3% in the liquid phase. The analysis of instantaneous and vibrationally averaged structures of the simulated system shows that the fraction of molecules participating in the formation of stack-type associates is 15-16%.</p>\",\"PeriodicalId\":668,\"journal\":{\"name\":\"Journal of Structural Chemistry\",\"volume\":\"65 12\",\"pages\":\"2438 - 2448\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0022476624120084\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0022476624120084","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

提出了糠醛分子的全原子模型。该模型是由具有有限变形范围的单个共价键连接的两个形式上独立的构型刚性碎片组成的系统。利用该模型,用蒙特卡罗方法计算了298 K常压下液态糠醛的结构和热物理特性(密度、蒸发热、比等压热容、等温压缩系数和体积热膨胀系数、介电常数)。结果表明,在298 K时,反式构象在气相中的比例为84.5%,在液相中的比例低至32.3%。对模拟体系的瞬时结构和振动平均结构的分析表明,参与层叠型缔合物形成的分子比例为15-16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural and Thermophysical Characteristics of Liquid Furfural at 298 K under Atmospheric Pressure

Structural and Thermophysical Characteristics of Liquid Furfural at 298 K under Atmospheric Pressure

An all-atom model of the furfural molecule is proposed. The model is a system of two formally independent configurationally rigid fragments linked by a single covalent bond with a limited range of deformations. Using this model, structural and thermophysical characteristics (density, heat of evaporation, specific isobaric heat capacity, coefficients of isothermal compressibility and volumetric thermal expansion, dielectric constant) of liquid furfural at 298 K under atmospheric pressure are calculated by the Monte Carlo method. It is established that the fraction of trans-conformers at 298 K is 84.5% in the gas phase and as low as 32.3% in the liquid phase. The analysis of instantaneous and vibrationally averaged structures of the simulated system shows that the fraction of molecules participating in the formation of stack-type associates is 15-16%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Structural Chemistry
Journal of Structural Chemistry 化学-无机化学与核化学
CiteScore
1.60
自引率
12.50%
发文量
142
审稿时长
8.3 months
期刊介绍: Journal is an interdisciplinary publication covering all aspects of structural chemistry, including the theory of molecular structure and chemical bond; the use of physical methods to study the electronic and spatial structure of chemical species; structural features of liquids, solutions, surfaces, supramolecular systems, nano- and solid materials; and the crystal structure of solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信