{"title":"不可满足子公式的长度","authors":"A. V. Seliverstov","doi":"10.1007/s10469-024-09771-0","DOIUrl":null,"url":null,"abstract":"<p>We find a bound for the length of a conjunction of some propositional formulas, for which every unsatisfiable formula contains an unsatisfiable subformula. In particular, this technique applies to formulas in conjunctive normal form with restrictions on the number of true literals within every elementary disjunction, as well as for 2-CNFs, for symmetric 3-CNFs, and for conjunctions of voting functions in three literals. A lower bound on the rank of some matrices is used in proofs.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"63 1","pages":"65 - 72"},"PeriodicalIF":0.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Length of an Unsatisfiable Subformula\",\"authors\":\"A. V. Seliverstov\",\"doi\":\"10.1007/s10469-024-09771-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We find a bound for the length of a conjunction of some propositional formulas, for which every unsatisfiable formula contains an unsatisfiable subformula. In particular, this technique applies to formulas in conjunctive normal form with restrictions on the number of true literals within every elementary disjunction, as well as for 2-CNFs, for symmetric 3-CNFs, and for conjunctions of voting functions in three literals. A lower bound on the rank of some matrices is used in proofs.</p>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"63 1\",\"pages\":\"65 - 72\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-024-09771-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-024-09771-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
We find a bound for the length of a conjunction of some propositional formulas, for which every unsatisfiable formula contains an unsatisfiable subformula. In particular, this technique applies to formulas in conjunctive normal form with restrictions on the number of true literals within every elementary disjunction, as well as for 2-CNFs, for symmetric 3-CNFs, and for conjunctions of voting functions in three literals. A lower bound on the rank of some matrices is used in proofs.
期刊介绍:
This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions.
Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences.
All articles are peer-reviewed.