在酶和化学氢化物转移反应中对烟酰胺核苷酸的立体特异性。

K S You
{"title":"在酶和化学氢化物转移反应中对烟酰胺核苷酸的立体特异性。","authors":"K S You","doi":"10.3109/10409238509113625","DOIUrl":null,"url":null,"abstract":"<p><p>The pyridine nucleotide (NAD and NADP)-linked enzymes are a large class of enzymes constituting approximately 17% of all classified enzymes. When these enzymes catalyze their reactions, the hydride transfer between the substrate and the reaction site (i.e., C-4 of the nicotinamide/dihydronicotinamide ring) of the coenzyme takes place in a stereospecific manner. Thus, in the reaction of oxidation of the reduced coenzyme, one group of enzymes catalyzes the extraction of only the hydrogen having the R configuration at the No. 4 carbon, while the other group catalyzes the removal of only that with the S configuration. Because this aspect of enzyme stereospecificity provides essential information for a given enzyme's reaction mechanism, active site structure, and evolutionary relationship with other enzymes, intensive effort has been made to establish the stereospecificities of as many enzymes as possible. This review presents the compilation of the stereospecificities of these enzymes. Some empirical rules, which are useful but not definitive, in predicting a given enzyme's stereospecificity are also described. In addition, the stereospecificity in enzymatic reactions is compared to the stereo-preference in chemical oxidoreduction of the coenzyme. In order to elucidate the mechanism for the enzyme stereospecificity, the conformations of the coenzyme in free-state and enzyme-bound state are extensively discussed here.</p>","PeriodicalId":75744,"journal":{"name":"CRC critical reviews in biochemistry","volume":"17 4","pages":"313-451"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10409238509113625","citationCount":"79","resultStr":"{\"title\":\"Stereospecificity for nicotinamide nucleotides in enzymatic and chemical hydride transfer reactions.\",\"authors\":\"K S You\",\"doi\":\"10.3109/10409238509113625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pyridine nucleotide (NAD and NADP)-linked enzymes are a large class of enzymes constituting approximately 17% of all classified enzymes. When these enzymes catalyze their reactions, the hydride transfer between the substrate and the reaction site (i.e., C-4 of the nicotinamide/dihydronicotinamide ring) of the coenzyme takes place in a stereospecific manner. Thus, in the reaction of oxidation of the reduced coenzyme, one group of enzymes catalyzes the extraction of only the hydrogen having the R configuration at the No. 4 carbon, while the other group catalyzes the removal of only that with the S configuration. Because this aspect of enzyme stereospecificity provides essential information for a given enzyme's reaction mechanism, active site structure, and evolutionary relationship with other enzymes, intensive effort has been made to establish the stereospecificities of as many enzymes as possible. This review presents the compilation of the stereospecificities of these enzymes. Some empirical rules, which are useful but not definitive, in predicting a given enzyme's stereospecificity are also described. In addition, the stereospecificity in enzymatic reactions is compared to the stereo-preference in chemical oxidoreduction of the coenzyme. In order to elucidate the mechanism for the enzyme stereospecificity, the conformations of the coenzyme in free-state and enzyme-bound state are extensively discussed here.</p>\",\"PeriodicalId\":75744,\"journal\":{\"name\":\"CRC critical reviews in biochemistry\",\"volume\":\"17 4\",\"pages\":\"313-451\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10409238509113625\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRC critical reviews in biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10409238509113625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRC critical reviews in biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10409238509113625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

吡啶核苷酸(NAD和NADP)连接酶是一类很大的酶,约占所有分类酶的17%。当这些酶催化它们的反应时,辅酶的底物和反应位点(即烟酰胺/二氢烟酰胺环的C-4)之间的氢化物转移以立体定向的方式进行。因此,在还原辅酶的氧化反应中,一组酶只催化提取4号碳上的R构型氢,而另一组酶只催化去除S构型氢。由于酶立体特异性的这一方面为特定酶的反应机制、活性位点结构以及与其他酶的进化关系提供了必要的信息,因此人们已经付出了大量的努力来建立尽可能多的酶的立体特异性。本文综述了这些酶的立体特异性的汇编。一些经验规则,这是有用的,但不是确定的,在预测一个给定的酶的立体专一性也描述。此外,将酶促反应中的立体专一性与辅酶化学氧化还原中的立体偏好性进行了比较。为了阐明酶立体特异性的机理,本文对该辅酶在游离态和酶结合态的构象进行了广泛的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereospecificity for nicotinamide nucleotides in enzymatic and chemical hydride transfer reactions.

The pyridine nucleotide (NAD and NADP)-linked enzymes are a large class of enzymes constituting approximately 17% of all classified enzymes. When these enzymes catalyze their reactions, the hydride transfer between the substrate and the reaction site (i.e., C-4 of the nicotinamide/dihydronicotinamide ring) of the coenzyme takes place in a stereospecific manner. Thus, in the reaction of oxidation of the reduced coenzyme, one group of enzymes catalyzes the extraction of only the hydrogen having the R configuration at the No. 4 carbon, while the other group catalyzes the removal of only that with the S configuration. Because this aspect of enzyme stereospecificity provides essential information for a given enzyme's reaction mechanism, active site structure, and evolutionary relationship with other enzymes, intensive effort has been made to establish the stereospecificities of as many enzymes as possible. This review presents the compilation of the stereospecificities of these enzymes. Some empirical rules, which are useful but not definitive, in predicting a given enzyme's stereospecificity are also described. In addition, the stereospecificity in enzymatic reactions is compared to the stereo-preference in chemical oxidoreduction of the coenzyme. In order to elucidate the mechanism for the enzyme stereospecificity, the conformations of the coenzyme in free-state and enzyme-bound state are extensively discussed here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信