Keelee C. McCleary-Petersen, Kaitlyn R. Wiegand, Michael T. Taleff, Damien Guironnet
{"title":"通过反应速率的工程聚合物结构","authors":"Keelee C. McCleary-Petersen, Kaitlyn R. Wiegand, Michael T. Taleff, Damien Guironnet","doi":"10.1021/acs.macromol.4c01662","DOIUrl":null,"url":null,"abstract":"The properties of macromolecules are intrinsically linked to their chemical composition, molecular weight distribution, and architecture. Variation of these features enables the creation of a vast chemical space capable of accommodating diverse material properties and applications. This review focuses on synthetic methodologies that exploit reaction rates to engineer the architecture of polymers. More specifically, three complementary synthetic strategies were identified: the first strategy is varying the reactivity of the monomers; the second strategy is implementing two simultaneous reactions (orthogonal or competitive); and, the third strategy is implementing reactor engineering principles, where controlling reactor parameters such as monomer concentration, residence time, and flow rate results in different architectures. Finally, this perspective is concluded with a short discussion about the challenges in <i>a posteriori</i> characterizing the architecture of polymers and the benefit of kinetic models to <i>a priori</i> predict the architecture of a polymer.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"2 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Polymer Architecture Through Reaction Rates\",\"authors\":\"Keelee C. McCleary-Petersen, Kaitlyn R. Wiegand, Michael T. Taleff, Damien Guironnet\",\"doi\":\"10.1021/acs.macromol.4c01662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The properties of macromolecules are intrinsically linked to their chemical composition, molecular weight distribution, and architecture. Variation of these features enables the creation of a vast chemical space capable of accommodating diverse material properties and applications. This review focuses on synthetic methodologies that exploit reaction rates to engineer the architecture of polymers. More specifically, three complementary synthetic strategies were identified: the first strategy is varying the reactivity of the monomers; the second strategy is implementing two simultaneous reactions (orthogonal or competitive); and, the third strategy is implementing reactor engineering principles, where controlling reactor parameters such as monomer concentration, residence time, and flow rate results in different architectures. Finally, this perspective is concluded with a short discussion about the challenges in <i>a posteriori</i> characterizing the architecture of polymers and the benefit of kinetic models to <i>a priori</i> predict the architecture of a polymer.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01662\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01662","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Engineering Polymer Architecture Through Reaction Rates
The properties of macromolecules are intrinsically linked to their chemical composition, molecular weight distribution, and architecture. Variation of these features enables the creation of a vast chemical space capable of accommodating diverse material properties and applications. This review focuses on synthetic methodologies that exploit reaction rates to engineer the architecture of polymers. More specifically, three complementary synthetic strategies were identified: the first strategy is varying the reactivity of the monomers; the second strategy is implementing two simultaneous reactions (orthogonal or competitive); and, the third strategy is implementing reactor engineering principles, where controlling reactor parameters such as monomer concentration, residence time, and flow rate results in different architectures. Finally, this perspective is concluded with a short discussion about the challenges in a posteriori characterizing the architecture of polymers and the benefit of kinetic models to a priori predict the architecture of a polymer.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.