{"title":"浓度梯度对Belousov-Zhabotinsky反应体系螺旋波动动力学的影响","authors":"Parvej Khan and Sumana Dutta","doi":"10.1039/D4CP03734K","DOIUrl":null,"url":null,"abstract":"<p >The oscillatory Belousov–Zhabotinsky (BZ) reaction is often used for the study of rotating spiral waves that are responsible for life-threatening cardiac arrhythmia. In this work, we explore the influence of a concentration gradient on the dynamics of spiral waves in the BZ-reaction system. Using ion-exchange resin beads, we introduce a gradient of hydrogen ions in a thin layer of BZ gel hosting a spiral wave. By monitoring the drift of the spiral tips from their initial position, we show that a gradient of hydrogen-ions can manoeuvre the position of the spiral. The magnitude of the drift is found to depend on the gradient strength and relative position of the spiral from the resin beads. Our experimental study is supported with numerical simulations carried out on a modified Oregonator model that we have developed from the Field, Körös, Noyes mechanism of the BZ.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 4","pages":" 2151-2157"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of concentration gradient on spiral wave dynamics in the Belousov–Zhabotinsky reaction system†\",\"authors\":\"Parvej Khan and Sumana Dutta\",\"doi\":\"10.1039/D4CP03734K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The oscillatory Belousov–Zhabotinsky (BZ) reaction is often used for the study of rotating spiral waves that are responsible for life-threatening cardiac arrhythmia. In this work, we explore the influence of a concentration gradient on the dynamics of spiral waves in the BZ-reaction system. Using ion-exchange resin beads, we introduce a gradient of hydrogen ions in a thin layer of BZ gel hosting a spiral wave. By monitoring the drift of the spiral tips from their initial position, we show that a gradient of hydrogen-ions can manoeuvre the position of the spiral. The magnitude of the drift is found to depend on the gradient strength and relative position of the spiral from the resin beads. Our experimental study is supported with numerical simulations carried out on a modified Oregonator model that we have developed from the Field, Körös, Noyes mechanism of the BZ.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 4\",\"pages\":\" 2151-2157\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp03734k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp03734k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of concentration gradient on spiral wave dynamics in the Belousov–Zhabotinsky reaction system†
The oscillatory Belousov–Zhabotinsky (BZ) reaction is often used for the study of rotating spiral waves that are responsible for life-threatening cardiac arrhythmia. In this work, we explore the influence of a concentration gradient on the dynamics of spiral waves in the BZ-reaction system. Using ion-exchange resin beads, we introduce a gradient of hydrogen ions in a thin layer of BZ gel hosting a spiral wave. By monitoring the drift of the spiral tips from their initial position, we show that a gradient of hydrogen-ions can manoeuvre the position of the spiral. The magnitude of the drift is found to depend on the gradient strength and relative position of the spiral from the resin beads. Our experimental study is supported with numerical simulations carried out on a modified Oregonator model that we have developed from the Field, Körös, Noyes mechanism of the BZ.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.