动力学蒙特卡罗方法作为研究磁热疗效率的工具

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
C. M. Aono, V. R. R. Aquino, A. F. Bakuzis, R. Miotto
{"title":"动力学蒙特卡罗方法作为研究磁热疗效率的工具","authors":"C. M. Aono, V. R. R. Aquino, A. F. Bakuzis, R. Miotto","doi":"10.1021/acs.jpcc.4c07127","DOIUrl":null,"url":null,"abstract":"This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"20 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency\",\"authors\":\"C. M. Aono, V. R. R. Aquino, A. F. Bakuzis, R. Miotto\",\"doi\":\"10.1021/acs.jpcc.4c07127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c07127\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07127","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是开发和实现一个基于两级系统框架的计算模型,采用动力学蒙特卡罗方法,模拟磁性纳米颗粒在交变磁场激励下的流体环境中的行为。主要目标是开发一种工具,用于研究不同纳米颗粒特性对磁热疗效率的影响。本研究的一个关键方面是通过与不同粒径、浓度、磁场振幅和频率的实验观察进行全面比较,严格验证计算模型,确保模型在捕捉悬浮颗粒的复杂动力学及其对热疗效率的影响方面的可靠性和准确性。我们的研究结果强调了该计算模型作为一种预测工具的潜力,用于估计不同系统在不同外加磁场下的比损耗功率(SLP)指标。通过描述纳米粒子的特性和热疗效率之间的关系,本研究有助于推进基于磁性纳米粒子的热疗疗法的基本理解和预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency

Kinetic Monte Carlo Approach as a Tool for the Study of Magnetic Hyperthermia Efficiency
This study focuses on the development and implementation of a computational model based on a two-level system framework, employing a kinetic Monte Carlo approach, to simulate the behavior of magnetic nanoparticles in fluid environments under alternating magnetic field excitation. The primary goal is to develop a tool to be used in the investigation of the impact of different nanoparticle properties on the efficiency of magnetic hyperthermia. A crucial aspect of this investigation is the rigorous validation of the computational model through comprehensive comparisons with experimental observations varying particle size, concentration, and magnetic field amplitude and frequency, ensuring the reliability and accuracy of the model in capturing the complex dynamics of nanoparticles in suspension and its influence on hyperthermia efficiency. Our findings underscore the potential of this computational model as a predictive tool for estimating Specific Loss Power (SLP) metrics across various systems subjected to different applied magnetic fields. By delineating the relationship between the nanoparticle’s characteristics and hyperthermia efficiency, this study contributes to advancing the fundamental understanding and predictive capabilities of magnetic nanoparticle-based hyperthermia therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信