通过降低叶片叶绿素含量变化对红边植被指数的影响,提高小麦绿色LAI模型的通用性

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Wei Li, Dong Li, Timothy A. Warner, Shouyang Liu, Frédéric Baret, Peiqi Yang, Jiale Jiang, Mingxia Dong, Tao Cheng, Yan Zhu, Weixing Cao, Xia Yao
{"title":"通过降低叶片叶绿素含量变化对红边植被指数的影响,提高小麦绿色LAI模型的通用性","authors":"Wei Li, Dong Li, Timothy A. Warner, Shouyang Liu, Frédéric Baret, Peiqi Yang, Jiale Jiang, Mingxia Dong, Tao Cheng, Yan Zhu, Weixing Cao, Xia Yao","doi":"10.1016/j.rse.2024.114589","DOIUrl":null,"url":null,"abstract":"The retrieval of wheat green leaf area index (LAI<sub>G</sub>) from satellite imagery is critical for monitoring crop growth and assessing food security. Numerous vegetation indices (VIs) derived from spectral reflectance have been widely used to estimate LAI<sub>G</sub>. In particular, red edge VIs can mitigate the confounding effect of multiple factors, such as the soil background and leaf inclination angle variation, and typically are highly correlated with LAI<sub>G</sub>. However, their relationship to LAI<sub>G</sub> tends to be affected by variations in leaf chlorophyll content (LCC), because the position of the red edge of vegetation spectra shifts with changes in LCC. This issue directly limits the operational use of VI-LAI<sub>G</sub> models, especially those employing red-edge bands. Therefore, to reduce the sensitivity of VI-LAI<sub>G</sub> relationships to LCC variation, this study proposed an innovative approach, called the Difference Combination between Spectral Indices (DCSI). Using synthetic data simulated with the PROSAIL radiative transfer model, we tested the dependence of the algebraic difference between common VIs on LCC. The results show that many combinations of VIs are insensitive to LCC variation. The newly developed DCSI combination between the Sentinel-2 red edge position (S2REP) and B6-red edge band (RE2) (i.e., DCSI(S2REP&amp;RE2)), produces the most accurate LAI<sub>G</sub> model when LCC varies. We also modified the constant of this DCSI combination, to develop the Sentinel-2 modified red edge position (S2MREP) for LAI<sub>G</sub> retrievals. In comparison to traditional VI-LAI<sub>G</sub> models, the S2MREP-LAI<sub>G</sub> model has higher accuracy, with <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">R</mi><mi is=\"true\" mathvariant=\"italic\">cal</mi><mn is=\"true\">2</mn></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 1751.5 1295.7\" width=\"4.068ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use></g><g is=\"true\" transform=\"translate(759,345)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(759,-328)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use><use transform=\"scale(0.707)\" x=\"433\" xlink:href=\"#MJMATHI-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMATHI-6C\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">R</mi><mi mathvariant=\"italic\" is=\"true\">cal</mi><mn is=\"true\">2</mn></msubsup></math></script></span> of 0.76 in calibration, and in validation <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">R</mi><mi is=\"true\" mathvariant=\"italic\">val</mi><mn is=\"true\">2</mn></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 1788.3 1295.7\" width=\"4.153ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use></g><g is=\"true\" transform=\"translate(759,345)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(759,-328)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-76\"></use><use transform=\"scale(0.707)\" x=\"485\" xlink:href=\"#MJMATHI-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1014\" xlink:href=\"#MJMATHI-6C\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">R</mi><mi mathvariant=\"italic\" is=\"true\">val</mi><mn is=\"true\">2</mn></msubsup></math></script></span> of 0.72 and <span><span style=\"\"><math><mi is=\"true\" mathvariant=\"italic\">RRMSE</mi></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex; margin-right: -0.06ex;\" viewbox=\"0 -796.9 3867.5 898.2\" width=\"8.983ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use><use x=\"759\" xlink:href=\"#MJMATHI-52\" y=\"0\"></use><use x=\"1519\" xlink:href=\"#MJMATHI-4D\" y=\"0\"></use><use x=\"2489\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3103\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use></g></g></svg></span><script type=\"math/mml\"><math><mi mathvariant=\"italic\" is=\"true\">RRMSE</mi></math></script></span> of 23.61 %. In addition, the S2MREP-LAI<sub>G</sub> model (<span><span style=\"\"><math><mi is=\"true\" mathvariant=\"italic\">RRMSE</mi></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex; margin-right: -0.06ex;\" viewbox=\"0 -796.9 3867.5 898.2\" width=\"8.983ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use><use x=\"759\" xlink:href=\"#MJMATHI-52\" y=\"0\"></use><use x=\"1519\" xlink:href=\"#MJMATHI-4D\" y=\"0\"></use><use x=\"2489\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3103\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use></g></g></svg></span><script type=\"math/mml\"><math><mi mathvariant=\"italic\" is=\"true\">RRMSE</mi></math></script></span>=28.64 %) also outperforms the existing Sentinel-2 LAI product (<span><span style=\"\"><math><mi is=\"true\" mathvariant=\"italic\">RRMSE</mi></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex; margin-right: -0.06ex;\" viewbox=\"0 -796.9 3867.5 898.2\" width=\"8.983ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use><use x=\"759\" xlink:href=\"#MJMATHI-52\" y=\"0\"></use><use x=\"1519\" xlink:href=\"#MJMATHI-4D\" y=\"0\"></use><use x=\"2489\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3103\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use></g></g></svg></span><script type=\"math/mml\"><math><mi mathvariant=\"italic\" is=\"true\">RRMSE</mi></math></script></span>=38.20 %) in the retrieval of wheat LAI<sub>G</sub>. In summary, the proposed DCSI approach and S2MREP effectively mitigate the impact of LCC variations on LAI<sub>G</sub> retrievals, thus facilitating the large-scale retrieval of LAI<sub>G</sub> and the spatial mapping of wheat LAI<sub>G</sub>.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"91 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved generality of wheat green LAI models through mitigation of the effect of leaf chlorophyll content variation with red edge vegetation indices\",\"authors\":\"Wei Li, Dong Li, Timothy A. Warner, Shouyang Liu, Frédéric Baret, Peiqi Yang, Jiale Jiang, Mingxia Dong, Tao Cheng, Yan Zhu, Weixing Cao, Xia Yao\",\"doi\":\"10.1016/j.rse.2024.114589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The retrieval of wheat green leaf area index (LAI<sub>G</sub>) from satellite imagery is critical for monitoring crop growth and assessing food security. Numerous vegetation indices (VIs) derived from spectral reflectance have been widely used to estimate LAI<sub>G</sub>. In particular, red edge VIs can mitigate the confounding effect of multiple factors, such as the soil background and leaf inclination angle variation, and typically are highly correlated with LAI<sub>G</sub>. However, their relationship to LAI<sub>G</sub> tends to be affected by variations in leaf chlorophyll content (LCC), because the position of the red edge of vegetation spectra shifts with changes in LCC. This issue directly limits the operational use of VI-LAI<sub>G</sub> models, especially those employing red-edge bands. Therefore, to reduce the sensitivity of VI-LAI<sub>G</sub> relationships to LCC variation, this study proposed an innovative approach, called the Difference Combination between Spectral Indices (DCSI). Using synthetic data simulated with the PROSAIL radiative transfer model, we tested the dependence of the algebraic difference between common VIs on LCC. The results show that many combinations of VIs are insensitive to LCC variation. The newly developed DCSI combination between the Sentinel-2 red edge position (S2REP) and B6-red edge band (RE2) (i.e., DCSI(S2REP&amp;RE2)), produces the most accurate LAI<sub>G</sub> model when LCC varies. We also modified the constant of this DCSI combination, to develop the Sentinel-2 modified red edge position (S2MREP) for LAI<sub>G</sub> retrievals. In comparison to traditional VI-LAI<sub>G</sub> models, the S2MREP-LAI<sub>G</sub> model has higher accuracy, with <span><span style=\\\"\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">cal</mi><mn is=\\\"true\\\">2</mn></msubsup></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -896.2 1751.5 1295.7\\\" width=\\\"4.068ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,345)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,-328)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-63\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"433\\\" xlink:href=\\\"#MJMATHI-61\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"963\\\" xlink:href=\\\"#MJMATHI-6C\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">cal</mi><mn is=\\\"true\\\">2</mn></msubsup></math></script></span> of 0.76 in calibration, and in validation <span><span style=\\\"\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">val</mi><mn is=\\\"true\\\">2</mn></msubsup></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -896.2 1788.3 1295.7\\\" width=\\\"4.153ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,345)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,-328)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-76\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"485\\\" xlink:href=\\\"#MJMATHI-61\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1014\\\" xlink:href=\\\"#MJMATHI-6C\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">val</mi><mn is=\\\"true\\\">2</mn></msubsup></math></script></span> of 0.72 and <span><span style=\\\"\\\"><math><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">RRMSE</mi></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex; margin-right: -0.06ex;\\\" viewbox=\\\"0 -796.9 3867.5 898.2\\\" width=\\\"8.983ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use><use x=\\\"759\\\" xlink:href=\\\"#MJMATHI-52\\\" y=\\\"0\\\"></use><use x=\\\"1519\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"0\\\"></use><use x=\\\"2489\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"3103\\\" xlink:href=\\\"#MJMATHI-45\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">RRMSE</mi></math></script></span> of 23.61 %. In addition, the S2MREP-LAI<sub>G</sub> model (<span><span style=\\\"\\\"><math><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">RRMSE</mi></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex; margin-right: -0.06ex;\\\" viewbox=\\\"0 -796.9 3867.5 898.2\\\" width=\\\"8.983ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use><use x=\\\"759\\\" xlink:href=\\\"#MJMATHI-52\\\" y=\\\"0\\\"></use><use x=\\\"1519\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"0\\\"></use><use x=\\\"2489\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"3103\\\" xlink:href=\\\"#MJMATHI-45\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">RRMSE</mi></math></script></span>=28.64 %) also outperforms the existing Sentinel-2 LAI product (<span><span style=\\\"\\\"><math><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">RRMSE</mi></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex; margin-right: -0.06ex;\\\" viewbox=\\\"0 -796.9 3867.5 898.2\\\" width=\\\"8.983ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use><use x=\\\"759\\\" xlink:href=\\\"#MJMATHI-52\\\" y=\\\"0\\\"></use><use x=\\\"1519\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"0\\\"></use><use x=\\\"2489\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"3103\\\" xlink:href=\\\"#MJMATHI-45\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">RRMSE</mi></math></script></span>=38.20 %) in the retrieval of wheat LAI<sub>G</sub>. In summary, the proposed DCSI approach and S2MREP effectively mitigate the impact of LCC variations on LAI<sub>G</sub> retrievals, thus facilitating the large-scale retrieval of LAI<sub>G</sub> and the spatial mapping of wheat LAI<sub>G</sub>.\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.rse.2024.114589\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114589","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从卫星图像中获取小麦绿叶面积指数(lag)对于监测作物生长和评估粮食安全至关重要。许多由光谱反射率得到的植被指数(VIs)已被广泛用于估算lag。特别是红边VIs能够缓解土壤背景和叶片倾角变化等多种因素的混杂效应,且与lag高度相关。然而,它们与叶绿素含量的关系往往受到叶绿素含量变化的影响,因为植被光谱的红边位置随着叶绿素含量的变化而变化。这个问题直接限制了vi - lag模型的操作使用,特别是那些采用红边带的模型。因此,为了降低vi - lagg关系对LCC变化的敏感性,本研究提出了一种创新的方法,即光谱指数差异组合(DCSI)。利用PROSAIL辐射传输模型模拟的合成数据,我们检验了常见VIs的代数差对LCC的依赖性。结果表明,许多VIs组合对LCC变化不敏感。新开发的Sentinel-2红边位置(S2REP)和b6红边带(RE2)的DCSI组合(即DCSI(S2REP&RE2)),可以得到LCC变化时最准确的lag模型。我们还修改了该DCSI组合的常数,以开发Sentinel-2修改的红边位置(S2MREP),用于lagg检索。与传统vi - lagg模型相比,s2mrep - lagg模型具有更高的精度,定标Rcal2Rcal2为0.76,验证Rval2Rval2为0.72,RRMSERRMSE为23.61%。此外,s2mrep - lag模型(RRMSERRMSE= 28.64%)在小麦lag的检索方面也优于现有的Sentinel-2 LAI产品(RRMSERRMSE= 38.20%)。综上所述,DCSI方法和S2MREP有效地缓解了LCC变化对LAIG检索的影响,从而促进了LAIG的大规模检索和小麦LAIG的空间映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved generality of wheat green LAI models through mitigation of the effect of leaf chlorophyll content variation with red edge vegetation indices
The retrieval of wheat green leaf area index (LAIG) from satellite imagery is critical for monitoring crop growth and assessing food security. Numerous vegetation indices (VIs) derived from spectral reflectance have been widely used to estimate LAIG. In particular, red edge VIs can mitigate the confounding effect of multiple factors, such as the soil background and leaf inclination angle variation, and typically are highly correlated with LAIG. However, their relationship to LAIG tends to be affected by variations in leaf chlorophyll content (LCC), because the position of the red edge of vegetation spectra shifts with changes in LCC. This issue directly limits the operational use of VI-LAIG models, especially those employing red-edge bands. Therefore, to reduce the sensitivity of VI-LAIG relationships to LCC variation, this study proposed an innovative approach, called the Difference Combination between Spectral Indices (DCSI). Using synthetic data simulated with the PROSAIL radiative transfer model, we tested the dependence of the algebraic difference between common VIs on LCC. The results show that many combinations of VIs are insensitive to LCC variation. The newly developed DCSI combination between the Sentinel-2 red edge position (S2REP) and B6-red edge band (RE2) (i.e., DCSI(S2REP&RE2)), produces the most accurate LAIG model when LCC varies. We also modified the constant of this DCSI combination, to develop the Sentinel-2 modified red edge position (S2MREP) for LAIG retrievals. In comparison to traditional VI-LAIG models, the S2MREP-LAIG model has higher accuracy, with Rcal2 of 0.76 in calibration, and in validation Rval2 of 0.72 and RRMSE of 23.61 %. In addition, the S2MREP-LAIG model (RRMSE=28.64 %) also outperforms the existing Sentinel-2 LAI product (RRMSE=38.20 %) in the retrieval of wheat LAIG. In summary, the proposed DCSI approach and S2MREP effectively mitigate the impact of LCC variations on LAIG retrievals, thus facilitating the large-scale retrieval of LAIG and the spatial mapping of wheat LAIG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信