Wei Li, Dong Li, Timothy A. Warner, Shouyang Liu, Frédéric Baret, Peiqi Yang, Jiale Jiang, Mingxia Dong, Tao Cheng, Yan Zhu, Weixing Cao, Xia Yao
{"title":"通过降低叶片叶绿素含量变化对红边植被指数的影响,提高小麦绿色LAI模型的通用性","authors":"Wei Li, Dong Li, Timothy A. Warner, Shouyang Liu, Frédéric Baret, Peiqi Yang, Jiale Jiang, Mingxia Dong, Tao Cheng, Yan Zhu, Weixing Cao, Xia Yao","doi":"10.1016/j.rse.2024.114589","DOIUrl":null,"url":null,"abstract":"The retrieval of wheat green leaf area index (LAI<sub>G</sub>) from satellite imagery is critical for monitoring crop growth and assessing food security. Numerous vegetation indices (VIs) derived from spectral reflectance have been widely used to estimate LAI<sub>G</sub>. In particular, red edge VIs can mitigate the confounding effect of multiple factors, such as the soil background and leaf inclination angle variation, and typically are highly correlated with LAI<sub>G</sub>. However, their relationship to LAI<sub>G</sub> tends to be affected by variations in leaf chlorophyll content (LCC), because the position of the red edge of vegetation spectra shifts with changes in LCC. This issue directly limits the operational use of VI-LAI<sub>G</sub> models, especially those employing red-edge bands. Therefore, to reduce the sensitivity of VI-LAI<sub>G</sub> relationships to LCC variation, this study proposed an innovative approach, called the Difference Combination between Spectral Indices (DCSI). Using synthetic data simulated with the PROSAIL radiative transfer model, we tested the dependence of the algebraic difference between common VIs on LCC. The results show that many combinations of VIs are insensitive to LCC variation. The newly developed DCSI combination between the Sentinel-2 red edge position (S2REP) and B6-red edge band (RE2) (i.e., DCSI(S2REP&RE2)), produces the most accurate LAI<sub>G</sub> model when LCC varies. We also modified the constant of this DCSI combination, to develop the Sentinel-2 modified red edge position (S2MREP) for LAI<sub>G</sub> retrievals. In comparison to traditional VI-LAI<sub>G</sub> models, the S2MREP-LAI<sub>G</sub> model has higher accuracy, with <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">R</mi><mi is=\"true\" mathvariant=\"italic\">cal</mi><mn is=\"true\">2</mn></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 1751.5 1295.7\" width=\"4.068ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use></g><g is=\"true\" transform=\"translate(759,345)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(759,-328)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use><use transform=\"scale(0.707)\" x=\"433\" xlink:href=\"#MJMATHI-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"963\" xlink:href=\"#MJMATHI-6C\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">R</mi><mi mathvariant=\"italic\" is=\"true\">cal</mi><mn is=\"true\">2</mn></msubsup></math></script></span> of 0.76 in calibration, and in validation <span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\">R</mi><mi is=\"true\" mathvariant=\"italic\">val</mi><mn is=\"true\">2</mn></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -896.2 1788.3 1295.7\" width=\"4.153ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use></g><g is=\"true\" transform=\"translate(759,345)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(759,-328)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-76\"></use><use transform=\"scale(0.707)\" x=\"485\" xlink:href=\"#MJMATHI-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1014\" xlink:href=\"#MJMATHI-6C\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">R</mi><mi mathvariant=\"italic\" is=\"true\">val</mi><mn is=\"true\">2</mn></msubsup></math></script></span> of 0.72 and <span><span style=\"\"><math><mi is=\"true\" mathvariant=\"italic\">RRMSE</mi></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex; margin-right: -0.06ex;\" viewbox=\"0 -796.9 3867.5 898.2\" width=\"8.983ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use><use x=\"759\" xlink:href=\"#MJMATHI-52\" y=\"0\"></use><use x=\"1519\" xlink:href=\"#MJMATHI-4D\" y=\"0\"></use><use x=\"2489\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3103\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use></g></g></svg></span><script type=\"math/mml\"><math><mi mathvariant=\"italic\" is=\"true\">RRMSE</mi></math></script></span> of 23.61 %. In addition, the S2MREP-LAI<sub>G</sub> model (<span><span style=\"\"><math><mi is=\"true\" mathvariant=\"italic\">RRMSE</mi></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex; margin-right: -0.06ex;\" viewbox=\"0 -796.9 3867.5 898.2\" width=\"8.983ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use><use x=\"759\" xlink:href=\"#MJMATHI-52\" y=\"0\"></use><use x=\"1519\" xlink:href=\"#MJMATHI-4D\" y=\"0\"></use><use x=\"2489\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3103\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use></g></g></svg></span><script type=\"math/mml\"><math><mi mathvariant=\"italic\" is=\"true\">RRMSE</mi></math></script></span>=28.64 %) also outperforms the existing Sentinel-2 LAI product (<span><span style=\"\"><math><mi is=\"true\" mathvariant=\"italic\">RRMSE</mi></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex; margin-right: -0.06ex;\" viewbox=\"0 -796.9 3867.5 898.2\" width=\"8.983ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-52\"></use><use x=\"759\" xlink:href=\"#MJMATHI-52\" y=\"0\"></use><use x=\"1519\" xlink:href=\"#MJMATHI-4D\" y=\"0\"></use><use x=\"2489\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use x=\"3103\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use></g></g></svg></span><script type=\"math/mml\"><math><mi mathvariant=\"italic\" is=\"true\">RRMSE</mi></math></script></span>=38.20 %) in the retrieval of wheat LAI<sub>G</sub>. In summary, the proposed DCSI approach and S2MREP effectively mitigate the impact of LCC variations on LAI<sub>G</sub> retrievals, thus facilitating the large-scale retrieval of LAI<sub>G</sub> and the spatial mapping of wheat LAI<sub>G</sub>.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"91 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved generality of wheat green LAI models through mitigation of the effect of leaf chlorophyll content variation with red edge vegetation indices\",\"authors\":\"Wei Li, Dong Li, Timothy A. Warner, Shouyang Liu, Frédéric Baret, Peiqi Yang, Jiale Jiang, Mingxia Dong, Tao Cheng, Yan Zhu, Weixing Cao, Xia Yao\",\"doi\":\"10.1016/j.rse.2024.114589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The retrieval of wheat green leaf area index (LAI<sub>G</sub>) from satellite imagery is critical for monitoring crop growth and assessing food security. Numerous vegetation indices (VIs) derived from spectral reflectance have been widely used to estimate LAI<sub>G</sub>. In particular, red edge VIs can mitigate the confounding effect of multiple factors, such as the soil background and leaf inclination angle variation, and typically are highly correlated with LAI<sub>G</sub>. However, their relationship to LAI<sub>G</sub> tends to be affected by variations in leaf chlorophyll content (LCC), because the position of the red edge of vegetation spectra shifts with changes in LCC. This issue directly limits the operational use of VI-LAI<sub>G</sub> models, especially those employing red-edge bands. Therefore, to reduce the sensitivity of VI-LAI<sub>G</sub> relationships to LCC variation, this study proposed an innovative approach, called the Difference Combination between Spectral Indices (DCSI). Using synthetic data simulated with the PROSAIL radiative transfer model, we tested the dependence of the algebraic difference between common VIs on LCC. The results show that many combinations of VIs are insensitive to LCC variation. The newly developed DCSI combination between the Sentinel-2 red edge position (S2REP) and B6-red edge band (RE2) (i.e., DCSI(S2REP&RE2)), produces the most accurate LAI<sub>G</sub> model when LCC varies. We also modified the constant of this DCSI combination, to develop the Sentinel-2 modified red edge position (S2MREP) for LAI<sub>G</sub> retrievals. In comparison to traditional VI-LAI<sub>G</sub> models, the S2MREP-LAI<sub>G</sub> model has higher accuracy, with <span><span style=\\\"\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">cal</mi><mn is=\\\"true\\\">2</mn></msubsup></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -896.2 1751.5 1295.7\\\" width=\\\"4.068ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,345)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,-328)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-63\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"433\\\" xlink:href=\\\"#MJMATHI-61\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"963\\\" xlink:href=\\\"#MJMATHI-6C\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">cal</mi><mn is=\\\"true\\\">2</mn></msubsup></math></script></span> of 0.76 in calibration, and in validation <span><span style=\\\"\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">val</mi><mn is=\\\"true\\\">2</mn></msubsup></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"3.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -896.2 1788.3 1295.7\\\" width=\\\"4.153ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,345)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,-328)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-76\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"485\\\" xlink:href=\\\"#MJMATHI-61\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1014\\\" xlink:href=\\\"#MJMATHI-6C\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">val</mi><mn is=\\\"true\\\">2</mn></msubsup></math></script></span> of 0.72 and <span><span style=\\\"\\\"><math><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">RRMSE</mi></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex; margin-right: -0.06ex;\\\" viewbox=\\\"0 -796.9 3867.5 898.2\\\" width=\\\"8.983ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use><use x=\\\"759\\\" xlink:href=\\\"#MJMATHI-52\\\" y=\\\"0\\\"></use><use x=\\\"1519\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"0\\\"></use><use x=\\\"2489\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"3103\\\" xlink:href=\\\"#MJMATHI-45\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">RRMSE</mi></math></script></span> of 23.61 %. In addition, the S2MREP-LAI<sub>G</sub> model (<span><span style=\\\"\\\"><math><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">RRMSE</mi></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex; margin-right: -0.06ex;\\\" viewbox=\\\"0 -796.9 3867.5 898.2\\\" width=\\\"8.983ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use><use x=\\\"759\\\" xlink:href=\\\"#MJMATHI-52\\\" y=\\\"0\\\"></use><use x=\\\"1519\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"0\\\"></use><use x=\\\"2489\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"3103\\\" xlink:href=\\\"#MJMATHI-45\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">RRMSE</mi></math></script></span>=28.64 %) also outperforms the existing Sentinel-2 LAI product (<span><span style=\\\"\\\"><math><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">RRMSE</mi></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex; margin-right: -0.06ex;\\\" viewbox=\\\"0 -796.9 3867.5 898.2\\\" width=\\\"8.983ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-52\\\"></use><use x=\\\"759\\\" xlink:href=\\\"#MJMATHI-52\\\" y=\\\"0\\\"></use><use x=\\\"1519\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"0\\\"></use><use x=\\\"2489\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use x=\\\"3103\\\" xlink:href=\\\"#MJMATHI-45\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/mml\\\"><math><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">RRMSE</mi></math></script></span>=38.20 %) in the retrieval of wheat LAI<sub>G</sub>. In summary, the proposed DCSI approach and S2MREP effectively mitigate the impact of LCC variations on LAI<sub>G</sub> retrievals, thus facilitating the large-scale retrieval of LAI<sub>G</sub> and the spatial mapping of wheat LAI<sub>G</sub>.\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.rse.2024.114589\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114589","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Improved generality of wheat green LAI models through mitigation of the effect of leaf chlorophyll content variation with red edge vegetation indices
The retrieval of wheat green leaf area index (LAIG) from satellite imagery is critical for monitoring crop growth and assessing food security. Numerous vegetation indices (VIs) derived from spectral reflectance have been widely used to estimate LAIG. In particular, red edge VIs can mitigate the confounding effect of multiple factors, such as the soil background and leaf inclination angle variation, and typically are highly correlated with LAIG. However, their relationship to LAIG tends to be affected by variations in leaf chlorophyll content (LCC), because the position of the red edge of vegetation spectra shifts with changes in LCC. This issue directly limits the operational use of VI-LAIG models, especially those employing red-edge bands. Therefore, to reduce the sensitivity of VI-LAIG relationships to LCC variation, this study proposed an innovative approach, called the Difference Combination between Spectral Indices (DCSI). Using synthetic data simulated with the PROSAIL radiative transfer model, we tested the dependence of the algebraic difference between common VIs on LCC. The results show that many combinations of VIs are insensitive to LCC variation. The newly developed DCSI combination between the Sentinel-2 red edge position (S2REP) and B6-red edge band (RE2) (i.e., DCSI(S2REP&RE2)), produces the most accurate LAIG model when LCC varies. We also modified the constant of this DCSI combination, to develop the Sentinel-2 modified red edge position (S2MREP) for LAIG retrievals. In comparison to traditional VI-LAIG models, the S2MREP-LAIG model has higher accuracy, with of 0.76 in calibration, and in validation of 0.72 and of 23.61 %. In addition, the S2MREP-LAIG model (=28.64 %) also outperforms the existing Sentinel-2 LAI product (=38.20 %) in the retrieval of wheat LAIG. In summary, the proposed DCSI approach and S2MREP effectively mitigate the impact of LCC variations on LAIG retrievals, thus facilitating the large-scale retrieval of LAIG and the spatial mapping of wheat LAIG.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.