基于圆柱空间约束采样方法的三维感知GAN

IF 13.7
Haochen Yu;Weixi Gong;Jiansheng Chen;Huimin Ma
{"title":"基于圆柱空间约束采样方法的三维感知GAN","authors":"Haochen Yu;Weixi Gong;Jiansheng Chen;Huimin Ma","doi":"10.1109/TIP.2024.3520423","DOIUrl":null,"url":null,"abstract":"Controllable 3D-aware scene synthesis seeks to disentangle the various latent codes in the implicit space enabling the generation network to create highly realistic images with 3D consistency. Recent approaches often integrate Neural Radiance Fields with the upsampling method of StyleGAN2, employing Convolutions with style modulation to transform spatial coordinates into frequency domain representations. Our analysis indicates that this approach can give rise to a bubble phenomenon in StyleNeRF. We argue that the style modulation introduces extraneous information into the implicit space, disrupting 3D implicit modeling and degrading image quality. We introduce HomuGAN, incorporating two key improvements. First, we disentangle the style modulation applied to implicit modeling from that utilized for super-resolution, thus alleviating the bubble phenomenon. Second, we introduce Cylindrical Spatial-Constrained Sampling and Parabolic Sampling. The latter sampling method, as an alternative method to the former, specifically contributes to the performance of foreground modeling of vehicles. We evaluate HomuGAN on publicly available datasets, comparing its performance to existing methods. Empirical results demonstrate that our model achieves the best performance, exhibiting relatively outstanding disentanglement capability. Moreover, HomuGAN addresses the training instability problem observed in StyleNeRF and reduces the bubble phenomenon.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"320-334"},"PeriodicalIF":13.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HomuGAN: A 3D-Aware GAN With the Method of Cylindrical Spatial-Constrained Sampling\",\"authors\":\"Haochen Yu;Weixi Gong;Jiansheng Chen;Huimin Ma\",\"doi\":\"10.1109/TIP.2024.3520423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controllable 3D-aware scene synthesis seeks to disentangle the various latent codes in the implicit space enabling the generation network to create highly realistic images with 3D consistency. Recent approaches often integrate Neural Radiance Fields with the upsampling method of StyleGAN2, employing Convolutions with style modulation to transform spatial coordinates into frequency domain representations. Our analysis indicates that this approach can give rise to a bubble phenomenon in StyleNeRF. We argue that the style modulation introduces extraneous information into the implicit space, disrupting 3D implicit modeling and degrading image quality. We introduce HomuGAN, incorporating two key improvements. First, we disentangle the style modulation applied to implicit modeling from that utilized for super-resolution, thus alleviating the bubble phenomenon. Second, we introduce Cylindrical Spatial-Constrained Sampling and Parabolic Sampling. The latter sampling method, as an alternative method to the former, specifically contributes to the performance of foreground modeling of vehicles. We evaluate HomuGAN on publicly available datasets, comparing its performance to existing methods. Empirical results demonstrate that our model achieves the best performance, exhibiting relatively outstanding disentanglement capability. Moreover, HomuGAN addresses the training instability problem observed in StyleNeRF and reduces the bubble phenomenon.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"320-334\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816358/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816358/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可控的3D感知场景合成旨在解开隐式空间中的各种潜在代码,使生成网络能够创建具有3D一致性的高度逼真的图像。最近的方法通常将神经辐射场与StyleGAN2的上采样方法相结合,使用带有样式调制的卷积将空间坐标转换为频域表示。我们的分析表明,这种方法会在StyleNeRF中产生气泡现象。我们认为样式调制将多余的信息引入隐式空间,破坏了三维隐式建模并降低了图像质量。我们引入了HomuGAN,包含了两个关键的改进。首先,我们将用于隐式建模的样式调制从用于超分辨率的样式调制中分离出来,从而减轻了气泡现象。其次,我们介绍了柱面空间约束采样和抛物面采样。后一种采样方法作为前一种采样方法的替代方法,特别有助于车辆前景建模的性能。我们在公开可用的数据集上评估了HomuGAN,并将其性能与现有方法进行了比较。实证结果表明,我们的模型达到了最好的性能,表现出相对突出的解纠缠能力。此外,HomuGAN解决了StyleNeRF中观察到的训练不稳定性问题,减少了气泡现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HomuGAN: A 3D-Aware GAN With the Method of Cylindrical Spatial-Constrained Sampling
Controllable 3D-aware scene synthesis seeks to disentangle the various latent codes in the implicit space enabling the generation network to create highly realistic images with 3D consistency. Recent approaches often integrate Neural Radiance Fields with the upsampling method of StyleGAN2, employing Convolutions with style modulation to transform spatial coordinates into frequency domain representations. Our analysis indicates that this approach can give rise to a bubble phenomenon in StyleNeRF. We argue that the style modulation introduces extraneous information into the implicit space, disrupting 3D implicit modeling and degrading image quality. We introduce HomuGAN, incorporating two key improvements. First, we disentangle the style modulation applied to implicit modeling from that utilized for super-resolution, thus alleviating the bubble phenomenon. Second, we introduce Cylindrical Spatial-Constrained Sampling and Parabolic Sampling. The latter sampling method, as an alternative method to the former, specifically contributes to the performance of foreground modeling of vehicles. We evaluate HomuGAN on publicly available datasets, comparing its performance to existing methods. Empirical results demonstrate that our model achieves the best performance, exhibiting relatively outstanding disentanglement capability. Moreover, HomuGAN addresses the training instability problem observed in StyleNeRF and reduces the bubble phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信