物理世界中面部身份保护的天然对抗面具

Tianxin Xie;Hu Han;Shiguang Shan;Xilin Chen
{"title":"物理世界中面部身份保护的天然对抗面具","authors":"Tianxin Xie;Hu Han;Shiguang Shan;Xilin Chen","doi":"10.1109/TPAMI.2024.3522994","DOIUrl":null,"url":null,"abstract":"Facial recognition (FR) technology offers convenience in our daily lives, but it also raises serious privacy issues due to unauthorized FR applications. To protect facial privacy, existing methods have proposed adversarial face examples that can fool FR systems. However, most of these methods work only in the digital domain and do not consider natural physical protections. In this paper, we present NatMask, a 3D-based method for creating natural and realistic adversarial face masks that can preserve facial identity in the physical world. Our method utilizes 3D face reconstruction and differentiable rendering to generate 2D face images with natural-looking facial masks. Moreover, we propose an identity-aware style injection (IASI) method to improve the naturalness and transferability of the mask texture. We evaluate our method on two face datasets to verify its effectiveness in protecting face identity against four state-of-the-art (SOTA) FR models and three commercial FR APIs in both digital and physical domains under black-box impersonation and dodging strategies. Experiments show that our method can generate adversarial masks with superior naturalness and physical realizability to safeguard face identity, outperforming SOTA methods by a large margin.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"2089-2106"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Adversarial Mask for Face Identity Protection in Physical World\",\"authors\":\"Tianxin Xie;Hu Han;Shiguang Shan;Xilin Chen\",\"doi\":\"10.1109/TPAMI.2024.3522994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial recognition (FR) technology offers convenience in our daily lives, but it also raises serious privacy issues due to unauthorized FR applications. To protect facial privacy, existing methods have proposed adversarial face examples that can fool FR systems. However, most of these methods work only in the digital domain and do not consider natural physical protections. In this paper, we present NatMask, a 3D-based method for creating natural and realistic adversarial face masks that can preserve facial identity in the physical world. Our method utilizes 3D face reconstruction and differentiable rendering to generate 2D face images with natural-looking facial masks. Moreover, we propose an identity-aware style injection (IASI) method to improve the naturalness and transferability of the mask texture. We evaluate our method on two face datasets to verify its effectiveness in protecting face identity against four state-of-the-art (SOTA) FR models and three commercial FR APIs in both digital and physical domains under black-box impersonation and dodging strategies. Experiments show that our method can generate adversarial masks with superior naturalness and physical realizability to safeguard face identity, outperforming SOTA methods by a large margin.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 3\",\"pages\":\"2089-2106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816466/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816466/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Adversarial Mask for Face Identity Protection in Physical World
Facial recognition (FR) technology offers convenience in our daily lives, but it also raises serious privacy issues due to unauthorized FR applications. To protect facial privacy, existing methods have proposed adversarial face examples that can fool FR systems. However, most of these methods work only in the digital domain and do not consider natural physical protections. In this paper, we present NatMask, a 3D-based method for creating natural and realistic adversarial face masks that can preserve facial identity in the physical world. Our method utilizes 3D face reconstruction and differentiable rendering to generate 2D face images with natural-looking facial masks. Moreover, we propose an identity-aware style injection (IASI) method to improve the naturalness and transferability of the mask texture. We evaluate our method on two face datasets to verify its effectiveness in protecting face identity against four state-of-the-art (SOTA) FR models and three commercial FR APIs in both digital and physical domains under black-box impersonation and dodging strategies. Experiments show that our method can generate adversarial masks with superior naturalness and physical realizability to safeguard face identity, outperforming SOTA methods by a large margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信