{"title":"ARAScaler:使用ETimeMixer实现高效云原生计算的自适应资源自动缩放方案","authors":"Byeonghui Jeong;Young-Sik Jeong","doi":"10.1109/TSC.2024.3522815","DOIUrl":null,"url":null,"abstract":"The container resource autoscaling techniques offer scalability and continuity for microservices operating in cloud-native computing environments. However, they manage resources inefficiently, causing resource waste and overload under complex workload patterns. In addition, these techniques fail to prevent oscillations caused by dynamic workloads, increasing the operational complexity. Therefore, we propose an adaptive resource autoscaling scheme (ARAScaler) to ensure the stability and resource efficiency of microservices with minimal scaling events. ARAScaler predicts future workloads using enhanced TimeMixer (ETimeMixer) applied with the convolutional method. Additionally, ARAScaler segments the predicted workload to identify burst, nonburst, dynamic, and static states and scales by calculating the optimal number of container instances for each identified state. The offline simulation results using seven cloud-workload trace datasets demonstrate the high prediction accuracy of ETimeMixer and the superior scaling performance of ARAScaler. The ARAScaler achieved a resource utilization of approximately 70% or higher with few updates and recorded the fewest resource overload instances compared to existing container resource autoscaling techniques.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"72-84"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARAScaler: Adaptive Resource Autoscaling Scheme Using ETimeMixer for Efficient Cloud-Native Computing\",\"authors\":\"Byeonghui Jeong;Young-Sik Jeong\",\"doi\":\"10.1109/TSC.2024.3522815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The container resource autoscaling techniques offer scalability and continuity for microservices operating in cloud-native computing environments. However, they manage resources inefficiently, causing resource waste and overload under complex workload patterns. In addition, these techniques fail to prevent oscillations caused by dynamic workloads, increasing the operational complexity. Therefore, we propose an adaptive resource autoscaling scheme (ARAScaler) to ensure the stability and resource efficiency of microservices with minimal scaling events. ARAScaler predicts future workloads using enhanced TimeMixer (ETimeMixer) applied with the convolutional method. Additionally, ARAScaler segments the predicted workload to identify burst, nonburst, dynamic, and static states and scales by calculating the optimal number of container instances for each identified state. The offline simulation results using seven cloud-workload trace datasets demonstrate the high prediction accuracy of ETimeMixer and the superior scaling performance of ARAScaler. The ARAScaler achieved a resource utilization of approximately 70% or higher with few updates and recorded the fewest resource overload instances compared to existing container resource autoscaling techniques.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 1\",\"pages\":\"72-84\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816296/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816296/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
ARAScaler: Adaptive Resource Autoscaling Scheme Using ETimeMixer for Efficient Cloud-Native Computing
The container resource autoscaling techniques offer scalability and continuity for microservices operating in cloud-native computing environments. However, they manage resources inefficiently, causing resource waste and overload under complex workload patterns. In addition, these techniques fail to prevent oscillations caused by dynamic workloads, increasing the operational complexity. Therefore, we propose an adaptive resource autoscaling scheme (ARAScaler) to ensure the stability and resource efficiency of microservices with minimal scaling events. ARAScaler predicts future workloads using enhanced TimeMixer (ETimeMixer) applied with the convolutional method. Additionally, ARAScaler segments the predicted workload to identify burst, nonburst, dynamic, and static states and scales by calculating the optimal number of container instances for each identified state. The offline simulation results using seven cloud-workload trace datasets demonstrate the high prediction accuracy of ETimeMixer and the superior scaling performance of ARAScaler. The ARAScaler achieved a resource utilization of approximately 70% or higher with few updates and recorded the fewest resource overload instances compared to existing container resource autoscaling techniques.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.