ARAScaler:使用ETimeMixer实现高效云原生计算的自适应资源自动缩放方案

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Byeonghui Jeong;Young-Sik Jeong
{"title":"ARAScaler:使用ETimeMixer实现高效云原生计算的自适应资源自动缩放方案","authors":"Byeonghui Jeong;Young-Sik Jeong","doi":"10.1109/TSC.2024.3522815","DOIUrl":null,"url":null,"abstract":"The container resource autoscaling techniques offer scalability and continuity for microservices operating in cloud-native computing environments. However, they manage resources inefficiently, causing resource waste and overload under complex workload patterns. In addition, these techniques fail to prevent oscillations caused by dynamic workloads, increasing the operational complexity. Therefore, we propose an adaptive resource autoscaling scheme (ARAScaler) to ensure the stability and resource efficiency of microservices with minimal scaling events. ARAScaler predicts future workloads using enhanced TimeMixer (ETimeMixer) applied with the convolutional method. Additionally, ARAScaler segments the predicted workload to identify burst, nonburst, dynamic, and static states and scales by calculating the optimal number of container instances for each identified state. The offline simulation results using seven cloud-workload trace datasets demonstrate the high prediction accuracy of ETimeMixer and the superior scaling performance of ARAScaler. The ARAScaler achieved a resource utilization of approximately 70% or higher with few updates and recorded the fewest resource overload instances compared to existing container resource autoscaling techniques.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"72-84"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARAScaler: Adaptive Resource Autoscaling Scheme Using ETimeMixer for Efficient Cloud-Native Computing\",\"authors\":\"Byeonghui Jeong;Young-Sik Jeong\",\"doi\":\"10.1109/TSC.2024.3522815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The container resource autoscaling techniques offer scalability and continuity for microservices operating in cloud-native computing environments. However, they manage resources inefficiently, causing resource waste and overload under complex workload patterns. In addition, these techniques fail to prevent oscillations caused by dynamic workloads, increasing the operational complexity. Therefore, we propose an adaptive resource autoscaling scheme (ARAScaler) to ensure the stability and resource efficiency of microservices with minimal scaling events. ARAScaler predicts future workloads using enhanced TimeMixer (ETimeMixer) applied with the convolutional method. Additionally, ARAScaler segments the predicted workload to identify burst, nonburst, dynamic, and static states and scales by calculating the optimal number of container instances for each identified state. The offline simulation results using seven cloud-workload trace datasets demonstrate the high prediction accuracy of ETimeMixer and the superior scaling performance of ARAScaler. The ARAScaler achieved a resource utilization of approximately 70% or higher with few updates and recorded the fewest resource overload instances compared to existing container resource autoscaling techniques.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 1\",\"pages\":\"72-84\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816296/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816296/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARAScaler: Adaptive Resource Autoscaling Scheme Using ETimeMixer for Efficient Cloud-Native Computing
The container resource autoscaling techniques offer scalability and continuity for microservices operating in cloud-native computing environments. However, they manage resources inefficiently, causing resource waste and overload under complex workload patterns. In addition, these techniques fail to prevent oscillations caused by dynamic workloads, increasing the operational complexity. Therefore, we propose an adaptive resource autoscaling scheme (ARAScaler) to ensure the stability and resource efficiency of microservices with minimal scaling events. ARAScaler predicts future workloads using enhanced TimeMixer (ETimeMixer) applied with the convolutional method. Additionally, ARAScaler segments the predicted workload to identify burst, nonburst, dynamic, and static states and scales by calculating the optimal number of container instances for each identified state. The offline simulation results using seven cloud-workload trace datasets demonstrate the high prediction accuracy of ETimeMixer and the superior scaling performance of ARAScaler. The ARAScaler achieved a resource utilization of approximately 70% or higher with few updates and recorded the fewest resource overload instances compared to existing container resource autoscaling techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信