Maksymilian Kulicki, Carlos Cabo, Tomasz Trzciński, Janusz Będkowski, Krzysztof Stereńczak
{"title":"用于森林监测的人工智能和地面点云","authors":"Maksymilian Kulicki, Carlos Cabo, Tomasz Trzciński, Janusz Będkowski, Krzysztof Stereńczak","doi":"10.1007/s40725-024-00234-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>This paper provides an overview of integrating artificial intelligence (AI), particularly deep learning (DL), with ground-based LiDAR point clouds for forest monitoring. It identifies trends, highlights advancements, and discusses future directions for AI-supported forest monitoring.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>Recent studies indicate that DL models significantly outperform traditional machine learning methods in forest inventory tasks using terrestrial LiDAR data. Key advancements have been made in areas such as semantic segmentation, which involves labeling points corresponding to different vegetation structures (e.g., leaves, branches, stems), individual tree segmentation, and species classification. Main challenges include a lack of standardized evaluation metrics, limited code and data sharing, and reproducibility issues. A critical issue is the need for extensive reference data, which hinders the development and evaluation of robust AI models. Solutions such as the creation of large-scale benchmark datasets and the use of synthetic data generation are proposed to address these challenges. Promising AI paradigms like Graph Neural Networks, semi-supervised learning, self-supervised learning, and generative modeling have shown potential but are not yet fully explored in forestry applications.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>The review underscores the transformative role of AI, particularly DL, in enhancing the accuracy and efficiency of forest monitoring using ground-based 3D point clouds. To advance the field, there is a critical need for comprehensive benchmark datasets, open-access policies for data and code, and the exploration of novel DL architectures and learning paradigms. These steps are essential for improving research reproducibility, facilitating comparative studies, and unlocking new insights into forest management and conservation.</p>","PeriodicalId":48653,"journal":{"name":"Current Forestry Reports","volume":"154 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence and Terrestrial Point Clouds for Forest Monitoring\",\"authors\":\"Maksymilian Kulicki, Carlos Cabo, Tomasz Trzciński, Janusz Będkowski, Krzysztof Stereńczak\",\"doi\":\"10.1007/s40725-024-00234-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose of Review</h3><p>This paper provides an overview of integrating artificial intelligence (AI), particularly deep learning (DL), with ground-based LiDAR point clouds for forest monitoring. It identifies trends, highlights advancements, and discusses future directions for AI-supported forest monitoring.</p><h3 data-test=\\\"abstract-sub-heading\\\">Recent Findings</h3><p>Recent studies indicate that DL models significantly outperform traditional machine learning methods in forest inventory tasks using terrestrial LiDAR data. Key advancements have been made in areas such as semantic segmentation, which involves labeling points corresponding to different vegetation structures (e.g., leaves, branches, stems), individual tree segmentation, and species classification. Main challenges include a lack of standardized evaluation metrics, limited code and data sharing, and reproducibility issues. A critical issue is the need for extensive reference data, which hinders the development and evaluation of robust AI models. Solutions such as the creation of large-scale benchmark datasets and the use of synthetic data generation are proposed to address these challenges. Promising AI paradigms like Graph Neural Networks, semi-supervised learning, self-supervised learning, and generative modeling have shown potential but are not yet fully explored in forestry applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Summary</h3><p>The review underscores the transformative role of AI, particularly DL, in enhancing the accuracy and efficiency of forest monitoring using ground-based 3D point clouds. To advance the field, there is a critical need for comprehensive benchmark datasets, open-access policies for data and code, and the exploration of novel DL architectures and learning paradigms. These steps are essential for improving research reproducibility, facilitating comparative studies, and unlocking new insights into forest management and conservation.</p>\",\"PeriodicalId\":48653,\"journal\":{\"name\":\"Current Forestry Reports\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Forestry Reports\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s40725-024-00234-4\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Forestry Reports","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s40725-024-00234-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Artificial Intelligence and Terrestrial Point Clouds for Forest Monitoring
Purpose of Review
This paper provides an overview of integrating artificial intelligence (AI), particularly deep learning (DL), with ground-based LiDAR point clouds for forest monitoring. It identifies trends, highlights advancements, and discusses future directions for AI-supported forest monitoring.
Recent Findings
Recent studies indicate that DL models significantly outperform traditional machine learning methods in forest inventory tasks using terrestrial LiDAR data. Key advancements have been made in areas such as semantic segmentation, which involves labeling points corresponding to different vegetation structures (e.g., leaves, branches, stems), individual tree segmentation, and species classification. Main challenges include a lack of standardized evaluation metrics, limited code and data sharing, and reproducibility issues. A critical issue is the need for extensive reference data, which hinders the development and evaluation of robust AI models. Solutions such as the creation of large-scale benchmark datasets and the use of synthetic data generation are proposed to address these challenges. Promising AI paradigms like Graph Neural Networks, semi-supervised learning, self-supervised learning, and generative modeling have shown potential but are not yet fully explored in forestry applications.
Summary
The review underscores the transformative role of AI, particularly DL, in enhancing the accuracy and efficiency of forest monitoring using ground-based 3D point clouds. To advance the field, there is a critical need for comprehensive benchmark datasets, open-access policies for data and code, and the exploration of novel DL architectures and learning paradigms. These steps are essential for improving research reproducibility, facilitating comparative studies, and unlocking new insights into forest management and conservation.
Current Forestry ReportsAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
15.90
自引率
2.10%
发文量
22
期刊介绍:
Current Forestry Reports features in-depth review articles written by global experts on significant advancements in forestry. Its goal is to provide clear, insightful, and balanced contributions that highlight and summarize important topics for forestry researchers and managers.
To achieve this, the journal appoints international authorities as Section Editors in various key subject areas like physiological processes, tree genetics, forest management, remote sensing, and wood structure and function. These Section Editors select topics for which leading experts contribute comprehensive review articles that focus on new developments and recently published papers of great importance. Moreover, an international Editorial Board evaluates the yearly table of contents, suggests articles of special interest to their specific country or region, and ensures that the topics are up-to-date and include emerging research.