压缩感知的量子相位估计

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-12-27 DOI:10.22331/q-2024-12-27-1579
Changhao Yi, Cunlu Zhou, Jun Takahashi
{"title":"压缩感知的量子相位估计","authors":"Changhao Yi, Cunlu Zhou, Jun Takahashi","doi":"10.22331/q-2024-12-27-1579","DOIUrl":null,"url":null,"abstract":"As a signal recovery algorithm, compressed sensing is particularly effective when the data has low complexity and samples are scarce, which aligns natually with the task of quantum phase estimation (QPE) on early fault-tolerant quantum computers. In this work, we present a new Heisenberg-limited, robust QPE algorithm based on compressed sensing, which requires only sparse and discrete sampling of times. Specifically, given multiple copies of a suitable initial state and queries to a specific unitary matrix, our algorithm can recover the phase with a total runtime of $\\mathcal{O}(\\epsilon^{-1}\\text{poly}\\log (\\epsilon^{-1}))$, where $\\epsilon$ is the desired accuracy. Additionally, the maximum runtime satisfies $T_{\\max}\\epsilon \\ll \\pi$, making it comparable to state-of-the-art algorithms. Furthermore, our result resolves the basis mismatch problem in certain cases by introducing an additional parameter to the traditional compressed sensing framework.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"42 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Phase Estimation by Compressed Sensing\",\"authors\":\"Changhao Yi, Cunlu Zhou, Jun Takahashi\",\"doi\":\"10.22331/q-2024-12-27-1579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a signal recovery algorithm, compressed sensing is particularly effective when the data has low complexity and samples are scarce, which aligns natually with the task of quantum phase estimation (QPE) on early fault-tolerant quantum computers. In this work, we present a new Heisenberg-limited, robust QPE algorithm based on compressed sensing, which requires only sparse and discrete sampling of times. Specifically, given multiple copies of a suitable initial state and queries to a specific unitary matrix, our algorithm can recover the phase with a total runtime of $\\\\mathcal{O}(\\\\epsilon^{-1}\\\\text{poly}\\\\log (\\\\epsilon^{-1}))$, where $\\\\epsilon$ is the desired accuracy. Additionally, the maximum runtime satisfies $T_{\\\\max}\\\\epsilon \\\\ll \\\\pi$, making it comparable to state-of-the-art algorithms. Furthermore, our result resolves the basis mismatch problem in certain cases by introducing an additional parameter to the traditional compressed sensing framework.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-12-27-1579\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-12-27-1579","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

压缩感知作为一种信号恢复算法,在数据复杂度低、样本稀缺的情况下尤为有效,这与早期容错量子计算机上的量子相位估计(QPE)任务自然是一致的。在这项工作中,我们提出了一种新的基于压缩感知的Heisenberg-limited鲁棒QPE算法,它只需要稀疏和离散的采样时间。具体来说,给定合适初始状态的多个副本和对特定酉矩阵的查询,我们的算法可以以$\mathcal{O}(\epsilon^{-1}\text{poly}\log (\epsilon^{-1}))$的总运行时间恢复阶段,其中$\epsilon$是所需的精度。此外,最大运行时间满足$T_{\max}\epsilon \ll \pi$,使其与最先进的算法相媲美。此外,我们的结果通过在传统压缩感知框架中引入额外的参数来解决某些情况下的基不匹配问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Phase Estimation by Compressed Sensing
As a signal recovery algorithm, compressed sensing is particularly effective when the data has low complexity and samples are scarce, which aligns natually with the task of quantum phase estimation (QPE) on early fault-tolerant quantum computers. In this work, we present a new Heisenberg-limited, robust QPE algorithm based on compressed sensing, which requires only sparse and discrete sampling of times. Specifically, given multiple copies of a suitable initial state and queries to a specific unitary matrix, our algorithm can recover the phase with a total runtime of $\mathcal{O}(\epsilon^{-1}\text{poly}\log (\epsilon^{-1}))$, where $\epsilon$ is the desired accuracy. Additionally, the maximum runtime satisfies $T_{\max}\epsilon \ll \pi$, making it comparable to state-of-the-art algorithms. Furthermore, our result resolves the basis mismatch problem in certain cases by introducing an additional parameter to the traditional compressed sensing framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信