在cbct中分割下牙槽管:牙齿仙女的挑战

Federico Bolelli;Luca Lumetti;Shankeeth Vinayahalingam;Mattia Di Bartolomeo;Arrigo Pellacani;Kevin Marchesini;Niels van Nistelrooij;Pieter van Lierop;Tong Xi;Yusheng Liu;Rui Xin;Tao Yang;Lisheng Wang;Haoshen Wang;Chenfan Xu;Zhiming Cui;Marek Wodzinski;Henning Müller;Yannick Kirchhoff;Maximilian R. Rokuss;Klaus Maier-Hein;Jaehwan Han;Wan Kim;Hong-Gi Ahn;Tomasz Szczepański;Michal K. Grzeszczyk;Przemyslaw Korzeniowski;Vicent Caselles-Ballester;Xavier Paolo Burgos-Artizzu;Ferran Prados Carrasco;Stefaan Berge’;Bram van Ginneken;Alexandre Anesi;Costantino Grana
{"title":"在cbct中分割下牙槽管:牙齿仙女的挑战","authors":"Federico Bolelli;Luca Lumetti;Shankeeth Vinayahalingam;Mattia Di Bartolomeo;Arrigo Pellacani;Kevin Marchesini;Niels van Nistelrooij;Pieter van Lierop;Tong Xi;Yusheng Liu;Rui Xin;Tao Yang;Lisheng Wang;Haoshen Wang;Chenfan Xu;Zhiming Cui;Marek Wodzinski;Henning Müller;Yannick Kirchhoff;Maximilian R. Rokuss;Klaus Maier-Hein;Jaehwan Han;Wan Kim;Hong-Gi Ahn;Tomasz Szczepański;Michal K. Grzeszczyk;Przemyslaw Korzeniowski;Vicent Caselles-Ballester;Xavier Paolo Burgos-Artizzu;Ferran Prados Carrasco;Stefaan Berge’;Bram van Ginneken;Alexandre Anesi;Costantino Grana","doi":"10.1109/TMI.2024.3523096","DOIUrl":null,"url":null,"abstract":"In recent years, several algorithms have been developed for the segmentation of the Inferior Alveolar Canal (IAC) in Cone-Beam Computed Tomography (CBCT) scans. However, the availability of public datasets in this domain is limited, resulting in a lack of comparative evaluation studies on a common benchmark. To address this scientific gap and encourage deep learning research in the field, the ToothFairy challenge was organized within the MICCAI 2023 conference. In this context, a public dataset was released to also serve as a benchmark for future research. The dataset comprises 443 CBCT scans, with voxel-level annotations of the IAC available for 153 of them, making it the largest publicly available dataset of its kind. The participants of the challenge were tasked with developing an algorithm to accurately identify the IAC using the 2D and 3D-annotated scans. This paper presents the details of the challenge and the contributions made by the most promising methods proposed by the participants. It represents the first comprehensive comparative evaluation of IAC segmentation methods on a common benchmark dataset, providing insights into the current state-of-the-art algorithms and outlining future research directions. Furthermore, to ensure reproducibility and promote future developments, an open-source repository that collects the implementations of the best submissions was released.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 4","pages":"1890-1906"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816445","citationCount":"0","resultStr":"{\"title\":\"Segmenting the Inferior Alveolar Canal in CBCTs Volumes: The ToothFairy Challenge\",\"authors\":\"Federico Bolelli;Luca Lumetti;Shankeeth Vinayahalingam;Mattia Di Bartolomeo;Arrigo Pellacani;Kevin Marchesini;Niels van Nistelrooij;Pieter van Lierop;Tong Xi;Yusheng Liu;Rui Xin;Tao Yang;Lisheng Wang;Haoshen Wang;Chenfan Xu;Zhiming Cui;Marek Wodzinski;Henning Müller;Yannick Kirchhoff;Maximilian R. Rokuss;Klaus Maier-Hein;Jaehwan Han;Wan Kim;Hong-Gi Ahn;Tomasz Szczepański;Michal K. Grzeszczyk;Przemyslaw Korzeniowski;Vicent Caselles-Ballester;Xavier Paolo Burgos-Artizzu;Ferran Prados Carrasco;Stefaan Berge’;Bram van Ginneken;Alexandre Anesi;Costantino Grana\",\"doi\":\"10.1109/TMI.2024.3523096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, several algorithms have been developed for the segmentation of the Inferior Alveolar Canal (IAC) in Cone-Beam Computed Tomography (CBCT) scans. However, the availability of public datasets in this domain is limited, resulting in a lack of comparative evaluation studies on a common benchmark. To address this scientific gap and encourage deep learning research in the field, the ToothFairy challenge was organized within the MICCAI 2023 conference. In this context, a public dataset was released to also serve as a benchmark for future research. The dataset comprises 443 CBCT scans, with voxel-level annotations of the IAC available for 153 of them, making it the largest publicly available dataset of its kind. The participants of the challenge were tasked with developing an algorithm to accurately identify the IAC using the 2D and 3D-annotated scans. This paper presents the details of the challenge and the contributions made by the most promising methods proposed by the participants. It represents the first comprehensive comparative evaluation of IAC segmentation methods on a common benchmark dataset, providing insights into the current state-of-the-art algorithms and outlining future research directions. Furthermore, to ensure reproducibility and promote future developments, an open-source repository that collects the implementations of the best submissions was released.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 4\",\"pages\":\"1890-1906\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816445\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816445/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816445/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在锥形束计算机断层扫描(CBCT)扫描中,已经开发了几种算法来分割下牙槽管(IAC)。然而,该领域的公共数据集的可用性有限,导致缺乏对共同基准的比较评估研究。为了解决这一科学差距并鼓励该领域的深度学习研究,在MICCAI 2023会议期间组织了“牙齿仙女”挑战。在此背景下,我们发布了一个公共数据集,作为未来研究的基准。该数据集包括443个CBCT扫描,其中153个具有IAC的体素级注释,使其成为同类中最大的公开数据集。挑战参与者的任务是开发一种算法,使用2D和3d注释扫描准确识别IAC。本文介绍了挑战的细节和参与者提出的最有前途的方法所做的贡献。它代表了在通用基准数据集上对IAC分割方法的第一次全面比较评估,提供了对当前最先进算法的见解,并概述了未来的研究方向。此外,为了确保可再现性并促进未来的开发,还发布了一个收集最佳提交实现的开源存储库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmenting the Inferior Alveolar Canal in CBCTs Volumes: The ToothFairy Challenge
In recent years, several algorithms have been developed for the segmentation of the Inferior Alveolar Canal (IAC) in Cone-Beam Computed Tomography (CBCT) scans. However, the availability of public datasets in this domain is limited, resulting in a lack of comparative evaluation studies on a common benchmark. To address this scientific gap and encourage deep learning research in the field, the ToothFairy challenge was organized within the MICCAI 2023 conference. In this context, a public dataset was released to also serve as a benchmark for future research. The dataset comprises 443 CBCT scans, with voxel-level annotations of the IAC available for 153 of them, making it the largest publicly available dataset of its kind. The participants of the challenge were tasked with developing an algorithm to accurately identify the IAC using the 2D and 3D-annotated scans. This paper presents the details of the challenge and the contributions made by the most promising methods proposed by the participants. It represents the first comprehensive comparative evaluation of IAC segmentation methods on a common benchmark dataset, providing insights into the current state-of-the-art algorithms and outlining future research directions. Furthermore, to ensure reproducibility and promote future developments, an open-source repository that collects the implementations of the best submissions was released.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信