分形时间过程的有限尺度Landau-Ginzburg模型

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Shaolong Zeng, Yangfan Hu, Shijing Tan, Biao Wang
{"title":"分形时间过程的有限尺度Landau-Ginzburg模型","authors":"Shaolong Zeng, Yangfan Hu, Shijing Tan, Biao Wang","doi":"10.1016/j.chaos.2024.115926","DOIUrl":null,"url":null,"abstract":"The universality of critical phenomena and finite-size scaling are effective methods for measuring critical exponents in experiments and inferring the intrinsic interactions within materials. Here, we establish the finite-size scaling form of the Landau–Ginzburg model for fractal time processes and quantitatively calculate the critical exponents at the upper critical dimension. Interestingly, contrary to the traditional conception that critical exponents are independent of dynamic processes and proportional to correlation length, we find that fractal time processes can not only change critical exponents but also yield a scaling form of size dependent on fractional order and spatial dimension. These theoretical results provide a reasonable method to determine and measure the existence of fractal time processes and their associated critical exponents. The simulations of the Landau–Ginzburg model with fractional temporal derivatives and the Ising model with long-range temporal interactions not only reveal critical exponents distinct from those of standard models but also exhibit unique size effects characteristic of fractal time processes. These results validate the emergence of a new universality class and confirm the predictions of the finite-size scaling theory for fractal time processes.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"12 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-size scaling of Landau–Ginzburg model for fractal time processes\",\"authors\":\"Shaolong Zeng, Yangfan Hu, Shijing Tan, Biao Wang\",\"doi\":\"10.1016/j.chaos.2024.115926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The universality of critical phenomena and finite-size scaling are effective methods for measuring critical exponents in experiments and inferring the intrinsic interactions within materials. Here, we establish the finite-size scaling form of the Landau–Ginzburg model for fractal time processes and quantitatively calculate the critical exponents at the upper critical dimension. Interestingly, contrary to the traditional conception that critical exponents are independent of dynamic processes and proportional to correlation length, we find that fractal time processes can not only change critical exponents but also yield a scaling form of size dependent on fractional order and spatial dimension. These theoretical results provide a reasonable method to determine and measure the existence of fractal time processes and their associated critical exponents. The simulations of the Landau–Ginzburg model with fractional temporal derivatives and the Ising model with long-range temporal interactions not only reveal critical exponents distinct from those of standard models but also exhibit unique size effects characteristic of fractal time processes. These results validate the emergence of a new universality class and confirm the predictions of the finite-size scaling theory for fractal time processes.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2024.115926\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115926","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

临界现象的普遍性和有限尺度是测量实验中临界指数和推断材料内在相互作用的有效方法。本文建立了分形时间过程的Landau-Ginzburg模型的有限尺度标度形式,并定量计算了上临界维的临界指数。有趣的是,与临界指数独立于动态过程且与相关长度成正比的传统概念相反,我们发现分形时间过程不仅可以改变临界指数,还可以产生依赖于分数阶和空间维数的尺度形式。这些理论结果为确定和测量分形时间过程及其相关临界指数的存在性提供了一种合理的方法。具有分数阶时间导数的Landau-Ginzburg模型和具有长时间相互作用的Ising模型的模拟不仅揭示了不同于标准模型的临界指数,而且显示了分形时间过程特有的尺寸效应特征。这些结果验证了一个新的普适性类的出现,并证实了分形时间过程的有限尺度理论的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-size scaling of Landau–Ginzburg model for fractal time processes
The universality of critical phenomena and finite-size scaling are effective methods for measuring critical exponents in experiments and inferring the intrinsic interactions within materials. Here, we establish the finite-size scaling form of the Landau–Ginzburg model for fractal time processes and quantitatively calculate the critical exponents at the upper critical dimension. Interestingly, contrary to the traditional conception that critical exponents are independent of dynamic processes and proportional to correlation length, we find that fractal time processes can not only change critical exponents but also yield a scaling form of size dependent on fractional order and spatial dimension. These theoretical results provide a reasonable method to determine and measure the existence of fractal time processes and their associated critical exponents. The simulations of the Landau–Ginzburg model with fractional temporal derivatives and the Ising model with long-range temporal interactions not only reveal critical exponents distinct from those of standard models but also exhibit unique size effects characteristic of fractal time processes. These results validate the emergence of a new universality class and confirm the predictions of the finite-size scaling theory for fractal time processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信