中性型随机FDEs分布Weyl几乎自同构解的存在性与稳定性

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xiaohui Wang, Xianlong Fu
{"title":"中性型随机FDEs分布Weyl几乎自同构解的存在性与稳定性","authors":"Xiaohui Wang, Xianlong Fu","doi":"10.1016/j.chaos.2024.115890","DOIUrl":null,"url":null,"abstract":"This paper considers the existence and stability of <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mi>p</mml:mi></mml:math>th Weyl almost automorphic solutions in distribution for a class of neutral stochastic functional differential equations. It is first proved by Banach fixed point theorem that the equation has a unique <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-bounded and uniformly <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-continuous solution, and then, this solution is further checked to be <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mi>p</mml:mi></mml:math>th Weyl almost automorphic in distribution. The global exponential stability and almost sure exponential stability of <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mi>p</mml:mi></mml:math>th Weyl almost automorphic solutions in distribution are also discussed for the considered equation under some conditions. In the end, an example is given to illustrate the obtained results.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"305 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and stability of [formula omitted]th Weyl almost automorphic solutions in distribution for neutral stochastic FDEs\",\"authors\":\"Xiaohui Wang, Xianlong Fu\",\"doi\":\"10.1016/j.chaos.2024.115890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the existence and stability of <mml:math altimg=\\\"si7.svg\\\" display=\\\"inline\\\"><mml:mi>p</mml:mi></mml:math>th Weyl almost automorphic solutions in distribution for a class of neutral stochastic functional differential equations. It is first proved by Banach fixed point theorem that the equation has a unique <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-bounded and uniformly <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-continuous solution, and then, this solution is further checked to be <mml:math altimg=\\\"si7.svg\\\" display=\\\"inline\\\"><mml:mi>p</mml:mi></mml:math>th Weyl almost automorphic in distribution. The global exponential stability and almost sure exponential stability of <mml:math altimg=\\\"si7.svg\\\" display=\\\"inline\\\"><mml:mi>p</mml:mi></mml:math>th Weyl almost automorphic solutions in distribution are also discussed for the considered equation under some conditions. In the end, an example is given to illustrate the obtained results.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"305 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2024.115890\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115890","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类中立型随机泛函微分方程在分布上的第p个Weyl概自同构解的存在性和稳定性。首先利用Banach不动点定理证明了该方程具有唯一的lp有界一致lp连续解,然后进一步证明了该解在分布上是p阶Weyl几乎自同构的。在一定条件下,讨论了所考虑的方程在分布上的第p个Weyl几乎自同构解的全局指数稳定性和几乎肯定指数稳定性。最后,给出了一个算例来说明所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and stability of [formula omitted]th Weyl almost automorphic solutions in distribution for neutral stochastic FDEs
This paper considers the existence and stability of pth Weyl almost automorphic solutions in distribution for a class of neutral stochastic functional differential equations. It is first proved by Banach fixed point theorem that the equation has a unique Lp-bounded and uniformly Lp-continuous solution, and then, this solution is further checked to be pth Weyl almost automorphic in distribution. The global exponential stability and almost sure exponential stability of pth Weyl almost automorphic solutions in distribution are also discussed for the considered equation under some conditions. In the end, an example is given to illustrate the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信