一种光燃料液晶弹性体操纵的自摇不倒车的建模

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Haiyang Wu , Yunlong Qiu , Kai Li
{"title":"一种光燃料液晶弹性体操纵的自摇不倒车的建模","authors":"Haiyang Wu ,&nbsp;Yunlong Qiu ,&nbsp;Kai Li","doi":"10.1016/j.chaos.2024.115941","DOIUrl":null,"url":null,"abstract":"<div><div>Self-sustaining motion offers notable advantages, including utilizing environmental energy, autonomy, and ease of control, which provide significant application potential in fields such as soft robotics, energy harvesting, and actuators. The key to developing self-sustaining systems often lies in designing mechanisms that enable the system to deviate from equilibrium under specific conditions and automatically return. Inspired by the self-recovery characteristics of tumbler toys, we propose a self-wobbling tumbler system by introducing light-driven changes in balance. The self-wobbling tumbler system consists of a wheel, a liquid crystal elastomer (LCE) fiber, a spring, a mass block, and steady illumination. The LCE fiber contracts in light and relaxes out of light, raising or lowering the system's center of gravity, resulting in continuous self-wobbling. Based on the photothermally responsive LCE model, we develop a theoretical model for the self-wobbling tumbler and derive its governing dynamic equations. The theoretical results show that the self-wobbling behavior is affected by the heat flux, the contraction coefficient, the rotational friction coefficient, the mass, the thermal characteristic time, and critical angle. The LCE-steered self-wobbling tumbler features advantages such as a simple structure, adjustable size, and ease of fabrication, and the theoretical results provide guidance for its applications in the fields of soft robotics, intelligent actuators, and adaptive materials.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115941"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of a light-fueled liquid crystal elastomer-steered self-wobbling tumbler\",\"authors\":\"Haiyang Wu ,&nbsp;Yunlong Qiu ,&nbsp;Kai Li\",\"doi\":\"10.1016/j.chaos.2024.115941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Self-sustaining motion offers notable advantages, including utilizing environmental energy, autonomy, and ease of control, which provide significant application potential in fields such as soft robotics, energy harvesting, and actuators. The key to developing self-sustaining systems often lies in designing mechanisms that enable the system to deviate from equilibrium under specific conditions and automatically return. Inspired by the self-recovery characteristics of tumbler toys, we propose a self-wobbling tumbler system by introducing light-driven changes in balance. The self-wobbling tumbler system consists of a wheel, a liquid crystal elastomer (LCE) fiber, a spring, a mass block, and steady illumination. The LCE fiber contracts in light and relaxes out of light, raising or lowering the system's center of gravity, resulting in continuous self-wobbling. Based on the photothermally responsive LCE model, we develop a theoretical model for the self-wobbling tumbler and derive its governing dynamic equations. The theoretical results show that the self-wobbling behavior is affected by the heat flux, the contraction coefficient, the rotational friction coefficient, the mass, the thermal characteristic time, and critical angle. The LCE-steered self-wobbling tumbler features advantages such as a simple structure, adjustable size, and ease of fabrication, and the theoretical results provide guidance for its applications in the fields of soft robotics, intelligent actuators, and adaptive materials.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"191 \",\"pages\":\"Article 115941\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924014930\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924014930","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自维持运动具有显著的优势,包括利用环境能源、自主性和易于控制,这在软机器人、能量收集和执行器等领域提供了巨大的应用潜力。开发自我维持系统的关键往往在于设计使系统在特定条件下偏离平衡并自动返回的机制。受翻转玩具自我恢复特性的启发,我们提出了一种通过引入光驱动平衡变化的自摆动翻转系统。该系统由车轮、液晶弹性体(LCE)纤维、弹簧、质量块和稳定照明组成。LCE光纤在光线下收缩,在光线下松弛,提高或降低系统的重心,导致连续的自摆动。在光热响应LCE模型的基础上,建立了自摆锤的理论模型,并推导了其控制动力学方程。理论结果表明,自摆振行为受热流密度、收缩系数、旋转摩擦系数、质量、热特性时间和临界角的影响。该方法具有结构简单、尺寸可调、制造方便等优点,为其在软机器人、智能执行器、自适应材料等领域的应用提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of a light-fueled liquid crystal elastomer-steered self-wobbling tumbler
Self-sustaining motion offers notable advantages, including utilizing environmental energy, autonomy, and ease of control, which provide significant application potential in fields such as soft robotics, energy harvesting, and actuators. The key to developing self-sustaining systems often lies in designing mechanisms that enable the system to deviate from equilibrium under specific conditions and automatically return. Inspired by the self-recovery characteristics of tumbler toys, we propose a self-wobbling tumbler system by introducing light-driven changes in balance. The self-wobbling tumbler system consists of a wheel, a liquid crystal elastomer (LCE) fiber, a spring, a mass block, and steady illumination. The LCE fiber contracts in light and relaxes out of light, raising or lowering the system's center of gravity, resulting in continuous self-wobbling. Based on the photothermally responsive LCE model, we develop a theoretical model for the self-wobbling tumbler and derive its governing dynamic equations. The theoretical results show that the self-wobbling behavior is affected by the heat flux, the contraction coefficient, the rotational friction coefficient, the mass, the thermal characteristic time, and critical angle. The LCE-steered self-wobbling tumbler features advantages such as a simple structure, adjustable size, and ease of fabrication, and the theoretical results provide guidance for its applications in the fields of soft robotics, intelligent actuators, and adaptive materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信