微扰涡旋环能量量子化的群论方法:管道型域的谱计算

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
S.V. Talalov
{"title":"微扰涡旋环能量量子化的群论方法:管道型域的谱计算","authors":"S.V. Talalov","doi":"10.1016/j.chaos.2024.115923","DOIUrl":null,"url":null,"abstract":"In this study, the problem of the energy spectrum of a quantum vortex loop moving in a thin long pipe is solved for the first time. We quantize this dynamic system using a new method, which leads to non-trivial results for circulation <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mi mathvariant=\"normal\">Γ</mml:mi></mml:math> and energy values <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mi>E</mml:mi></mml:math>. It is shown that the spectrum has a quasi-continuous fractal structure. In the final form, we present the spectrum of the vortex loop in the form of a “Regge trajectory” <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>E</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>E</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant=\"normal\">Γ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>. The vortex quantization problem is considered outside of two-fluid hydrodynamics and other conventional approaches. We also discuss ways to improve the model, which could allow us to apply the results we have obtained to describe a quantum turbulent flow.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"54 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the group-theoretical approach to energy quantization of a perturbed vortex ring: Spectrum calculating in the pipe-type domain\",\"authors\":\"S.V. Talalov\",\"doi\":\"10.1016/j.chaos.2024.115923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the problem of the energy spectrum of a quantum vortex loop moving in a thin long pipe is solved for the first time. We quantize this dynamic system using a new method, which leads to non-trivial results for circulation <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi></mml:math> and energy values <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mi>E</mml:mi></mml:math>. It is shown that the spectrum has a quasi-continuous fractal structure. In the final form, we present the spectrum of the vortex loop in the form of a “Regge trajectory” <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>E</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mi>E</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>. The vortex quantization problem is considered outside of two-fluid hydrodynamics and other conventional approaches. We also discuss ways to improve the model, which could allow us to apply the results we have obtained to describe a quantum turbulent flow.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2024.115923\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115923","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次解决了量子涡旋环在细长管内运动的能谱问题。我们用一种新的方法对该动力系统进行量化,得到了循环Γ和能量值e的非平凡结果,证明了谱具有准连续分形结构。在最后的形式中,我们以“Regge轨迹”E=E(Γ)的形式表示涡旋环的频谱。涡旋量化问题是在双流体力学和其他传统方法之外考虑的。我们还讨论了改进模型的方法,使我们能够将所得结果应用于描述量子湍流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the group-theoretical approach to energy quantization of a perturbed vortex ring: Spectrum calculating in the pipe-type domain
In this study, the problem of the energy spectrum of a quantum vortex loop moving in a thin long pipe is solved for the first time. We quantize this dynamic system using a new method, which leads to non-trivial results for circulation Γ and energy values E. It is shown that the spectrum has a quasi-continuous fractal structure. In the final form, we present the spectrum of the vortex loop in the form of a “Regge trajectory” E=E(Γ). The vortex quantization problem is considered outside of two-fluid hydrodynamics and other conventional approaches. We also discuss ways to improve the model, which could allow us to apply the results we have obtained to describe a quantum turbulent flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信