{"title":"不对称剪切反应诱导孪晶","authors":"Jie Huang , Mingyu Lei , Guochun Yang , Bin Wen","doi":"10.1016/j.ijplas.2024.104226","DOIUrl":null,"url":null,"abstract":"<div><div>Twinning, a plastic deformation mode, is crucial in dictating material plasticity and significantly impacting their mechanical properties. In this work, we propose a new twinning mechanism based on the phenomenon of asymmetric shear response. By integrating transition state theory with this mechanism, we derive the twinning nucleation stress, and reveal the impact of temperature and strain rate on twin nucleation and growth processes. The model's efficacy is validated through a comparison of predicted results for face centered cubic (FCC), body centered cubic (BCC) and hexagonal close packed (HCP) crystals with experimental ones. This work provides a theoretical foundation for predicting the conditions under which twinning occurs, thereby guiding the design and fabrication of materials containing twin structures.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"185 ","pages":"Article 104226"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twinning induced by asymmetric shear response\",\"authors\":\"Jie Huang , Mingyu Lei , Guochun Yang , Bin Wen\",\"doi\":\"10.1016/j.ijplas.2024.104226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Twinning, a plastic deformation mode, is crucial in dictating material plasticity and significantly impacting their mechanical properties. In this work, we propose a new twinning mechanism based on the phenomenon of asymmetric shear response. By integrating transition state theory with this mechanism, we derive the twinning nucleation stress, and reveal the impact of temperature and strain rate on twin nucleation and growth processes. The model's efficacy is validated through a comparison of predicted results for face centered cubic (FCC), body centered cubic (BCC) and hexagonal close packed (HCP) crystals with experimental ones. This work provides a theoretical foundation for predicting the conditions under which twinning occurs, thereby guiding the design and fabrication of materials containing twin structures.</div></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"185 \",\"pages\":\"Article 104226\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S074964192400353X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074964192400353X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Twinning, a plastic deformation mode, is crucial in dictating material plasticity and significantly impacting their mechanical properties. In this work, we propose a new twinning mechanism based on the phenomenon of asymmetric shear response. By integrating transition state theory with this mechanism, we derive the twinning nucleation stress, and reveal the impact of temperature and strain rate on twin nucleation and growth processes. The model's efficacy is validated through a comparison of predicted results for face centered cubic (FCC), body centered cubic (BCC) and hexagonal close packed (HCP) crystals with experimental ones. This work provides a theoretical foundation for predicting the conditions under which twinning occurs, thereby guiding the design and fabrication of materials containing twin structures.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.