{"title":"TRIM14作用的新发现:从疾病到免疫调节。","authors":"Xinhao Li, Feilong Zhou, Kaiyi Niu, Yizhu Wang, Yanlong Shi, Yunxin Li, Xin Gao, Weijie Zhao, Tianyi Chen, Yewei Zhang","doi":"10.1038/s41420-024-02276-w","DOIUrl":null,"url":null,"abstract":"<p><p>TRIM14 is an important member of the TRIM family and is widely expressed in a variety of tissues. Like other members of the TRIM family, TRIM14 is also involved in ubiquitination modifications. TRIM14 was initially reported as an interferon-stimulated gene (ISG). In recent years, many studies have focused on the regulatory role of TRIM14 in signaling pathways such as the PI3K/Akt, NF-κB, and cGAS/STING pathways and revealed its mechanism of action in a variety of pathophysiological processes, and the regulation of TRIM14 has attracted the interest of many researchers as a new direction for the treatment of various diseases. However, there are no reviews on the role of TRIM14 in diseases. In this paper, we will describe the structure of TRIM14, review its role in cancer, cardiovascular disease, cervical spondylosis, inflammation and antiviral immunity, and provide an outlook on future research directions.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"513"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging discoveries on the role of TRIM14: from diseases to immune regulation.\",\"authors\":\"Xinhao Li, Feilong Zhou, Kaiyi Niu, Yizhu Wang, Yanlong Shi, Yunxin Li, Xin Gao, Weijie Zhao, Tianyi Chen, Yewei Zhang\",\"doi\":\"10.1038/s41420-024-02276-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>TRIM14 is an important member of the TRIM family and is widely expressed in a variety of tissues. Like other members of the TRIM family, TRIM14 is also involved in ubiquitination modifications. TRIM14 was initially reported as an interferon-stimulated gene (ISG). In recent years, many studies have focused on the regulatory role of TRIM14 in signaling pathways such as the PI3K/Akt, NF-κB, and cGAS/STING pathways and revealed its mechanism of action in a variety of pathophysiological processes, and the regulation of TRIM14 has attracted the interest of many researchers as a new direction for the treatment of various diseases. However, there are no reviews on the role of TRIM14 in diseases. In this paper, we will describe the structure of TRIM14, review its role in cancer, cardiovascular disease, cervical spondylosis, inflammation and antiviral immunity, and provide an outlook on future research directions.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"10 1\",\"pages\":\"513\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02276-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02276-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Emerging discoveries on the role of TRIM14: from diseases to immune regulation.
TRIM14 is an important member of the TRIM family and is widely expressed in a variety of tissues. Like other members of the TRIM family, TRIM14 is also involved in ubiquitination modifications. TRIM14 was initially reported as an interferon-stimulated gene (ISG). In recent years, many studies have focused on the regulatory role of TRIM14 in signaling pathways such as the PI3K/Akt, NF-κB, and cGAS/STING pathways and revealed its mechanism of action in a variety of pathophysiological processes, and the regulation of TRIM14 has attracted the interest of many researchers as a new direction for the treatment of various diseases. However, there are no reviews on the role of TRIM14 in diseases. In this paper, we will describe the structure of TRIM14, review its role in cancer, cardiovascular disease, cervical spondylosis, inflammation and antiviral immunity, and provide an outlook on future research directions.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.