子宫内膜异位症血浆蛋白生物标志物的鉴定和疾病诊断统计模型的发展

IF 6 1区 医学 Q1 OBSTETRICS & GYNECOLOGY
E M Schoeman, S Bringans, K Peters, T Casey, C Andronis, L Chen, M Duong, J E Girling, M Healey, B A Boughton, D Ismail, J Ito, C Laming, H Lim, M Mead, M Raju, P Tan, R Lipscombe, S Holdsworth-Carson, P A W Rogers
{"title":"子宫内膜异位症血浆蛋白生物标志物的鉴定和疾病诊断统计模型的发展","authors":"E M Schoeman, S Bringans, K Peters, T Casey, C Andronis, L Chen, M Duong, J E Girling, M Healey, B A Boughton, D Ismail, J Ito, C Laming, H Lim, M Mead, M Raju, P Tan, R Lipscombe, S Holdsworth-Carson, P A W Rogers","doi":"10.1093/humrep/deae278","DOIUrl":null,"url":null,"abstract":"STUDY QUESTION Can a panel of plasma protein biomarkers be identified to accurately and specifically diagnose endometriosis? SUMMARY ANSWER A novel panel of 10 plasma protein biomarkers was identified and validated, demonstrating strong predictive accuracy for the diagnosis of endometriosis. WHAT IS KNOWN ALREADY Endometriosis poses intricate medical challenges for affected individuals and their physicians, yet diagnosis currently takes an average of 7 years and normally requires invasive laparoscopy. Consequently, the need for a simple, accurate non-invasive diagnostic tool is paramount. STUDY DESIGN, SIZE, DURATION This study compared 805 participants across two independent clinical populations, with the status of all endometriosis and symptomatic control samples confirmed by laparoscopy. A proteomics workflow was used to identify and validate plasma protein biomarkers for the diagnosis of endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS A proteomics discovery experiment identified candidate biomarkers before a targeted mass spectrometry assay was developed and used to compare plasma samples from 464 endometriosis cases, 153 general population controls, and 132 symptomatic controls. Three multivariate models were developed: Model 1 (logistic regression) for endometriosis cases versus general population controls, Model 2 (logistic regression) for rASRM stage II to IV (mild to severe) endometriosis cases versus symptomatic controls, and Model 3 (random forest) for stage IV (severe) endometriosis cases versus symptomatic controls. MAIN RESULTS AND THE ROLE OF CHANCE A panel of 10 protein biomarkers were identified across the three models which added significant value to clinical factors. Model 3 (severe endometriosis vs symptomatic controls) performed the best with an area under the receiver operating characteristic curve (AUC) of 0.997 (95% CI 0.994–1.000). This model could also accurately distinguish symptomatic controls from early-stage endometriosis when applied to the remaining dataset (AUCs ≥0.85 for stage I to III endometriosis). Model 1 also demonstrated strong predictive performance with an AUC of 0.993 (95% CI 0.988–0.998), while Model 2 achieved an AUC of 0.729 (95% CI 0.676–0.783). LIMITATIONS, REASONS FOR CAUTION The study participants were mostly of European ethnicity and the results may be biased from undiagnosed endometriosis in controls. Further analysis is required to enable the generalizability of the findings to other populations and settings. WIDER IMPLICATIONS OF THE FINDINGS In combination, these plasma protein biomarkers and resulting diagnostic models represent a potential new tool for the non-invasive diagnosis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) Subject recruitment at The Royal Women’s Hospital, Melbourne, was supported in part by funding from the Australian National Health and Medical Research Council (NHMRC) project grants GNT1105321 and GNT1026033 and Australian Medical Research Future Fund grant no. MRF1199715 (P.A.W.R., S.H.-C., and M.H.). Proteomics International has filed patent WO 2021/184060 A1 that relates to endometriosis biomarkers described in this manuscript; S.B., R.L., and T.C. declare an interest in this patent. J.I., S.B., C.L., D.I., H.L., K.P., M.D., M.M., M.R., P.T., R.L., and T.C. are shareholders in Proteomics International. Otherwise, the authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.","PeriodicalId":13003,"journal":{"name":"Human reproduction","volume":"113 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of plasma protein biomarkers for endometriosis and the development of statistical models for disease diagnosis\",\"authors\":\"E M Schoeman, S Bringans, K Peters, T Casey, C Andronis, L Chen, M Duong, J E Girling, M Healey, B A Boughton, D Ismail, J Ito, C Laming, H Lim, M Mead, M Raju, P Tan, R Lipscombe, S Holdsworth-Carson, P A W Rogers\",\"doi\":\"10.1093/humrep/deae278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"STUDY QUESTION Can a panel of plasma protein biomarkers be identified to accurately and specifically diagnose endometriosis? SUMMARY ANSWER A novel panel of 10 plasma protein biomarkers was identified and validated, demonstrating strong predictive accuracy for the diagnosis of endometriosis. WHAT IS KNOWN ALREADY Endometriosis poses intricate medical challenges for affected individuals and their physicians, yet diagnosis currently takes an average of 7 years and normally requires invasive laparoscopy. Consequently, the need for a simple, accurate non-invasive diagnostic tool is paramount. STUDY DESIGN, SIZE, DURATION This study compared 805 participants across two independent clinical populations, with the status of all endometriosis and symptomatic control samples confirmed by laparoscopy. A proteomics workflow was used to identify and validate plasma protein biomarkers for the diagnosis of endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS A proteomics discovery experiment identified candidate biomarkers before a targeted mass spectrometry assay was developed and used to compare plasma samples from 464 endometriosis cases, 153 general population controls, and 132 symptomatic controls. Three multivariate models were developed: Model 1 (logistic regression) for endometriosis cases versus general population controls, Model 2 (logistic regression) for rASRM stage II to IV (mild to severe) endometriosis cases versus symptomatic controls, and Model 3 (random forest) for stage IV (severe) endometriosis cases versus symptomatic controls. MAIN RESULTS AND THE ROLE OF CHANCE A panel of 10 protein biomarkers were identified across the three models which added significant value to clinical factors. Model 3 (severe endometriosis vs symptomatic controls) performed the best with an area under the receiver operating characteristic curve (AUC) of 0.997 (95% CI 0.994–1.000). This model could also accurately distinguish symptomatic controls from early-stage endometriosis when applied to the remaining dataset (AUCs ≥0.85 for stage I to III endometriosis). Model 1 also demonstrated strong predictive performance with an AUC of 0.993 (95% CI 0.988–0.998), while Model 2 achieved an AUC of 0.729 (95% CI 0.676–0.783). LIMITATIONS, REASONS FOR CAUTION The study participants were mostly of European ethnicity and the results may be biased from undiagnosed endometriosis in controls. Further analysis is required to enable the generalizability of the findings to other populations and settings. WIDER IMPLICATIONS OF THE FINDINGS In combination, these plasma protein biomarkers and resulting diagnostic models represent a potential new tool for the non-invasive diagnosis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) Subject recruitment at The Royal Women’s Hospital, Melbourne, was supported in part by funding from the Australian National Health and Medical Research Council (NHMRC) project grants GNT1105321 and GNT1026033 and Australian Medical Research Future Fund grant no. MRF1199715 (P.A.W.R., S.H.-C., and M.H.). Proteomics International has filed patent WO 2021/184060 A1 that relates to endometriosis biomarkers described in this manuscript; S.B., R.L., and T.C. declare an interest in this patent. J.I., S.B., C.L., D.I., H.L., K.P., M.D., M.M., M.R., P.T., R.L., and T.C. are shareholders in Proteomics International. Otherwise, the authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.\",\"PeriodicalId\":13003,\"journal\":{\"name\":\"Human reproduction\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human reproduction\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/humrep/deae278\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/humrep/deae278","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究问题:一组血浆蛋白生物标志物是否可以准确和特异性地诊断子宫内膜异位症?一个由10个血浆蛋白生物标志物组成的新小组被确定并验证,显示出子宫内膜异位症诊断的强大预测准确性。子宫内膜异位症给患者及其医生带来了复杂的医疗挑战,但目前诊断平均需要7年时间,通常需要侵入性腹腔镜检查。因此,需要一个简单,准确的非侵入性诊断工具是至关重要的。研究设计、规模、持续时间本研究比较了两个独立临床人群的805名参与者,所有子宫内膜异位症的状态和症状对照样本均通过腹腔镜确认。蛋白质组学工作流程用于鉴定和验证诊断子宫内膜异位症的血浆蛋白生物标志物。在开发靶向质谱分析之前,蛋白质组学发现实验确定了候选生物标志物,并用于比较464例子宫内膜异位症患者,153例普通人群对照和132例症状对照的血浆样本。建立了三个多变量模型:模型1(逻辑回归)用于子宫内膜异位症病例与一般人群对照,模型2(逻辑回归)用于rASRM II至IV期(轻度至重度)子宫内膜异位症病例与症状对照,模型3(随机森林)用于IV期(严重)子宫内膜异位症病例与症状对照。主要结果和机会的作用在三种模型中确定了一组10个蛋白质生物标志物,这些标志物为临床因素增加了显着价值。模型3(重度子宫内膜异位症与症状对照)表现最好,受试者工作特征曲线下面积(AUC)为0.997 (95% CI 0.994-1.000)。当应用于剩余的数据集时,该模型还可以准确区分症状对照和早期子宫内膜异位症(I至III期子宫内膜异位症的aus≥0.85)。模型1也表现出较强的预测性能,AUC为0.993 (95% CI 0.988-0.998),而模型2的AUC为0.729 (95% CI 0.676-0.783)。局限性,谨慎的原因研究参与者大多是欧洲种族,结果可能与对照组未确诊的子宫内膜异位症有偏差。需要进一步分析,使调查结果能够推广到其他人群和环境。研究结果的更广泛意义结合起来,这些血浆蛋白生物标志物和由此产生的诊断模型代表了子宫内膜异位症非侵入性诊断的潜在新工具。研究经费/竞争利益(S)墨尔本皇家妇女医院的受试者招募部分由澳大利亚国家卫生和医学研究委员会(NHMRC)项目资助GNT1105321和GNT1026033以及澳大利亚医学研究未来基金资助号。mr . 1199715 (p.a.w.r, s.h.c。M.H.)。Proteomics International已申请专利WO 2021/184060 A1,涉及本手稿中描述的子宫内膜异位症生物标志物;s。b。r。l。和t。c。宣布对这项专利感兴趣。j.i., s.b., c.l., d.i., h.l., k.p., m.d., m.m., m.r., p.t., r.l.和T.C.是Proteomics International的股东。除此之外,作者没有利益冲突。试验注册号n / a。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of plasma protein biomarkers for endometriosis and the development of statistical models for disease diagnosis
STUDY QUESTION Can a panel of plasma protein biomarkers be identified to accurately and specifically diagnose endometriosis? SUMMARY ANSWER A novel panel of 10 plasma protein biomarkers was identified and validated, demonstrating strong predictive accuracy for the diagnosis of endometriosis. WHAT IS KNOWN ALREADY Endometriosis poses intricate medical challenges for affected individuals and their physicians, yet diagnosis currently takes an average of 7 years and normally requires invasive laparoscopy. Consequently, the need for a simple, accurate non-invasive diagnostic tool is paramount. STUDY DESIGN, SIZE, DURATION This study compared 805 participants across two independent clinical populations, with the status of all endometriosis and symptomatic control samples confirmed by laparoscopy. A proteomics workflow was used to identify and validate plasma protein biomarkers for the diagnosis of endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS A proteomics discovery experiment identified candidate biomarkers before a targeted mass spectrometry assay was developed and used to compare plasma samples from 464 endometriosis cases, 153 general population controls, and 132 symptomatic controls. Three multivariate models were developed: Model 1 (logistic regression) for endometriosis cases versus general population controls, Model 2 (logistic regression) for rASRM stage II to IV (mild to severe) endometriosis cases versus symptomatic controls, and Model 3 (random forest) for stage IV (severe) endometriosis cases versus symptomatic controls. MAIN RESULTS AND THE ROLE OF CHANCE A panel of 10 protein biomarkers were identified across the three models which added significant value to clinical factors. Model 3 (severe endometriosis vs symptomatic controls) performed the best with an area under the receiver operating characteristic curve (AUC) of 0.997 (95% CI 0.994–1.000). This model could also accurately distinguish symptomatic controls from early-stage endometriosis when applied to the remaining dataset (AUCs ≥0.85 for stage I to III endometriosis). Model 1 also demonstrated strong predictive performance with an AUC of 0.993 (95% CI 0.988–0.998), while Model 2 achieved an AUC of 0.729 (95% CI 0.676–0.783). LIMITATIONS, REASONS FOR CAUTION The study participants were mostly of European ethnicity and the results may be biased from undiagnosed endometriosis in controls. Further analysis is required to enable the generalizability of the findings to other populations and settings. WIDER IMPLICATIONS OF THE FINDINGS In combination, these plasma protein biomarkers and resulting diagnostic models represent a potential new tool for the non-invasive diagnosis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) Subject recruitment at The Royal Women’s Hospital, Melbourne, was supported in part by funding from the Australian National Health and Medical Research Council (NHMRC) project grants GNT1105321 and GNT1026033 and Australian Medical Research Future Fund grant no. MRF1199715 (P.A.W.R., S.H.-C., and M.H.). Proteomics International has filed patent WO 2021/184060 A1 that relates to endometriosis biomarkers described in this manuscript; S.B., R.L., and T.C. declare an interest in this patent. J.I., S.B., C.L., D.I., H.L., K.P., M.D., M.M., M.R., P.T., R.L., and T.C. are shareholders in Proteomics International. Otherwise, the authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human reproduction
Human reproduction 医学-妇产科学
CiteScore
10.90
自引率
6.60%
发文量
1369
审稿时长
1 months
期刊介绍: Human Reproduction features full-length, peer-reviewed papers reporting original research, concise clinical case reports, as well as opinions and debates on topical issues. Papers published cover the clinical science and medical aspects of reproductive physiology, pathology and endocrinology; including andrology, gonad function, gametogenesis, fertilization, embryo development, implantation, early pregnancy, genetics, genetic diagnosis, oncology, infectious disease, surgery, contraception, infertility treatment, psychology, ethics and social issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信