{"title":"化合物(E)-2-(3,4-二羟基苯乙烯基)-3-羟基- 4h -吡喃-4- 1减轻阿尔茨海默病小鼠模型的神经炎症和认知障碍。","authors":"Xueyan Liu, Wei Wu, Xuejuan Li, Chengyan Wang, Ke Chai, Fanru Yuan, Huijuan Zheng, Yuxing Yao, Chenlu Li, Zu-Cheng Ye, Daijun Zha","doi":"10.4103/NRR.NRR-D-23-01890","DOIUrl":null,"url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202511000-00034/figure1/v/2024-12-20T164640Z/r/image-tiff Previous studies have shown that the compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one (D30), a pyromeconic acid derivative, possesses antioxidant and anti-inflammatory properties, inhibits amyloid-β aggregation, and alleviates scopolamine-induced cognitive impairment, similar to the phase III clinical drug resveratrol. In this study, we established a mouse model of Alzheimer's disease via intracerebroventricular injection of fibrillar amyloid-β to investigate the effect of D30 on fibrillar amyloid-β-induced neuropathology. Our results showed that D30 alleviated fibrillar amyloid-β-induced cognitive impairment, promoted fibrillar amyloid-β clearance from the hippocampus and cortex, suppressed oxidative stress, and inhibited activation of microglia and astrocytes. D30 also reversed the fibrillar amyloid-β-induced loss of dendritic spines and synaptic protein expression. Notably, we demonstrated that exogenous fibrillar amyloid-β introduced by intracerebroventricular injection greatly increased galectin-3 expression levels in the brain, and this increase was blocked by D30. Considering the role of D30 in clearing amyloid-β, inhibiting neuroinflammation, protecting synapses, and improving cognition, this study highlights the potential of galectin-3 as a promising treatment target for patients with Alzheimer's disease.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"20 11","pages":"3330-3344"},"PeriodicalIF":5.9000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one alleviates neuroinflammation and cognitive impairment in a mouse model of Alzheimer's disease.\",\"authors\":\"Xueyan Liu, Wei Wu, Xuejuan Li, Chengyan Wang, Ke Chai, Fanru Yuan, Huijuan Zheng, Yuxing Yao, Chenlu Li, Zu-Cheng Ye, Daijun Zha\",\"doi\":\"10.4103/NRR.NRR-D-23-01890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>JOURNAL/nrgr/04.03/01300535-202511000-00034/figure1/v/2024-12-20T164640Z/r/image-tiff Previous studies have shown that the compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one (D30), a pyromeconic acid derivative, possesses antioxidant and anti-inflammatory properties, inhibits amyloid-β aggregation, and alleviates scopolamine-induced cognitive impairment, similar to the phase III clinical drug resveratrol. In this study, we established a mouse model of Alzheimer's disease via intracerebroventricular injection of fibrillar amyloid-β to investigate the effect of D30 on fibrillar amyloid-β-induced neuropathology. Our results showed that D30 alleviated fibrillar amyloid-β-induced cognitive impairment, promoted fibrillar amyloid-β clearance from the hippocampus and cortex, suppressed oxidative stress, and inhibited activation of microglia and astrocytes. D30 also reversed the fibrillar amyloid-β-induced loss of dendritic spines and synaptic protein expression. Notably, we demonstrated that exogenous fibrillar amyloid-β introduced by intracerebroventricular injection greatly increased galectin-3 expression levels in the brain, and this increase was blocked by D30. Considering the role of D30 in clearing amyloid-β, inhibiting neuroinflammation, protecting synapses, and improving cognition, this study highlights the potential of galectin-3 as a promising treatment target for patients with Alzheimer's disease.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\"20 11\",\"pages\":\"3330-3344\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-23-01890\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-23-01890","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one alleviates neuroinflammation and cognitive impairment in a mouse model of Alzheimer's disease.
JOURNAL/nrgr/04.03/01300535-202511000-00034/figure1/v/2024-12-20T164640Z/r/image-tiff Previous studies have shown that the compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one (D30), a pyromeconic acid derivative, possesses antioxidant and anti-inflammatory properties, inhibits amyloid-β aggregation, and alleviates scopolamine-induced cognitive impairment, similar to the phase III clinical drug resveratrol. In this study, we established a mouse model of Alzheimer's disease via intracerebroventricular injection of fibrillar amyloid-β to investigate the effect of D30 on fibrillar amyloid-β-induced neuropathology. Our results showed that D30 alleviated fibrillar amyloid-β-induced cognitive impairment, promoted fibrillar amyloid-β clearance from the hippocampus and cortex, suppressed oxidative stress, and inhibited activation of microglia and astrocytes. D30 also reversed the fibrillar amyloid-β-induced loss of dendritic spines and synaptic protein expression. Notably, we demonstrated that exogenous fibrillar amyloid-β introduced by intracerebroventricular injection greatly increased galectin-3 expression levels in the brain, and this increase was blocked by D30. Considering the role of D30 in clearing amyloid-β, inhibiting neuroinflammation, protecting synapses, and improving cognition, this study highlights the potential of galectin-3 as a promising treatment target for patients with Alzheimer's disease.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.