{"title":"与(r,k)-Srivastava分数阶积分相关的p价解析函数的微分从属和上位结果。","authors":"Adel Salim Tayyah, Waggas Galib Atshan","doi":"10.1016/j.mex.2024.103079","DOIUrl":null,"url":null,"abstract":"<p><p>The object of the present paper is to investigate generalizations of the hypergeometric function and Srivastava fractional integral calculus by using a general version of gamma function(namely <math><mrow><mo>(</mo> <mrow><mi>r</mi> <mo>,</mo> <mi>k</mi></mrow> <mo>)</mo></mrow> </math> -gamma function).•Some fundamental results for these new concepts are provided.•We introduced differential subordination and superordination results associated with the defined new fractional integral operator.•Also, we establish sandwich results for <math><mi>p</mi></math> -valent analytic functions involving this operator.•Finally, an application to fluid mechanics is discussed.</p>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"13 ","pages":"103079"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664174/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential subordination and superordination results for <i>p</i>-valent analytic functions associated with (<i>r,k</i>)-Srivastava fractional integral calculus.\",\"authors\":\"Adel Salim Tayyah, Waggas Galib Atshan\",\"doi\":\"10.1016/j.mex.2024.103079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The object of the present paper is to investigate generalizations of the hypergeometric function and Srivastava fractional integral calculus by using a general version of gamma function(namely <math><mrow><mo>(</mo> <mrow><mi>r</mi> <mo>,</mo> <mi>k</mi></mrow> <mo>)</mo></mrow> </math> -gamma function).•Some fundamental results for these new concepts are provided.•We introduced differential subordination and superordination results associated with the defined new fractional integral operator.•Also, we establish sandwich results for <math><mi>p</mi></math> -valent analytic functions involving this operator.•Finally, an application to fluid mechanics is discussed.</p>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"13 \",\"pages\":\"103079\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664174/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mex.2024.103079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mex.2024.103079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Differential subordination and superordination results for p-valent analytic functions associated with (r,k)-Srivastava fractional integral calculus.
The object of the present paper is to investigate generalizations of the hypergeometric function and Srivastava fractional integral calculus by using a general version of gamma function(namely -gamma function).•Some fundamental results for these new concepts are provided.•We introduced differential subordination and superordination results associated with the defined new fractional integral operator.•Also, we establish sandwich results for -valent analytic functions involving this operator.•Finally, an application to fluid mechanics is discussed.