{"title":"基于图扩散网络的自然语音高血压早期检测。","authors":"Haydar Ankışhan , Haydar Celik , Haluk Ulucanlar , Bülent Mustafa Yenigün","doi":"10.1016/j.compbiomed.2024.109591","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative approach to cuffless blood pressure prediction by integrating speech and demographic features. With a focus on non-invasive monitoring, especially in remote regions, our model harnesses speech signals and demographic data to accurately estimate blood pressure. We found a strong correlation between our predictive model and early-stage high blood pressure, highlighting its potential for early detection. Central to our investigation is the Graph Diffusion Network (GDN) model, achieving exceptional performance with an R<sup>2</sup> score of 0.96 and a Pearson correlation coefficient (PCC) of 0.98. In early-stage hypertension detection, the GDN model achieved an F1-Score of 0.8735 ± 0.10 and accuracy of 0.8896 ± 0.11. Additionally, without considering demographic features, the model still performed well, with an R<sup>2</sup> of 0.740 and PCC of 0.764 when used alone. These results emphasize the value of combining speech and demographic features, offering a promising, non-invasive solution for blood pressure monitoring.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"Article 109591"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early detection of high blood pressure from natural speech sounds with graph diffusion network\",\"authors\":\"Haydar Ankışhan , Haydar Celik , Haluk Ulucanlar , Bülent Mustafa Yenigün\",\"doi\":\"10.1016/j.compbiomed.2024.109591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an innovative approach to cuffless blood pressure prediction by integrating speech and demographic features. With a focus on non-invasive monitoring, especially in remote regions, our model harnesses speech signals and demographic data to accurately estimate blood pressure. We found a strong correlation between our predictive model and early-stage high blood pressure, highlighting its potential for early detection. Central to our investigation is the Graph Diffusion Network (GDN) model, achieving exceptional performance with an R<sup>2</sup> score of 0.96 and a Pearson correlation coefficient (PCC) of 0.98. In early-stage hypertension detection, the GDN model achieved an F1-Score of 0.8735 ± 0.10 and accuracy of 0.8896 ± 0.11. Additionally, without considering demographic features, the model still performed well, with an R<sup>2</sup> of 0.740 and PCC of 0.764 when used alone. These results emphasize the value of combining speech and demographic features, offering a promising, non-invasive solution for blood pressure monitoring.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"185 \",\"pages\":\"Article 109591\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524016767\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524016767","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Early detection of high blood pressure from natural speech sounds with graph diffusion network
This study presents an innovative approach to cuffless blood pressure prediction by integrating speech and demographic features. With a focus on non-invasive monitoring, especially in remote regions, our model harnesses speech signals and demographic data to accurately estimate blood pressure. We found a strong correlation between our predictive model and early-stage high blood pressure, highlighting its potential for early detection. Central to our investigation is the Graph Diffusion Network (GDN) model, achieving exceptional performance with an R2 score of 0.96 and a Pearson correlation coefficient (PCC) of 0.98. In early-stage hypertension detection, the GDN model achieved an F1-Score of 0.8735 ± 0.10 and accuracy of 0.8896 ± 0.11. Additionally, without considering demographic features, the model still performed well, with an R2 of 0.740 and PCC of 0.764 when used alone. These results emphasize the value of combining speech and demographic features, offering a promising, non-invasive solution for blood pressure monitoring.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.