地下水氟化物的地球化学演化、地质统计制图和机器学习预测建模:以奎达省俾路支省西部为例。

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Taimoor Shah Durrani, Malik Muhammad Akhtar, Kaleem U Kakar, Muhammad Najam Khan, Faiz Muhammad, Maqbool Khan, H Habibullah, Changaiz Khan
{"title":"地下水氟化物的地球化学演化、地质统计制图和机器学习预测建模:以奎达省俾路支省西部为例。","authors":"Taimoor Shah Durrani, Malik Muhammad Akhtar, Kaleem U Kakar, Muhammad Najam Khan, Faiz Muhammad, Maqbool Khan, H Habibullah, Changaiz Khan","doi":"10.1007/s10653-024-02335-2","DOIUrl":null,"url":null,"abstract":"<p><p>Around 2.6 billion people are at risk of tooth carries and fluorosis worldwide. Quetta is the worst affected district in Balochistan plateau. Endemic abnormal groundwater fluoride ( <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> ) lacks spatiotemporal studies. This research integrates geospatial distribution, geochemical signatures, and data driven method for evaluating <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> levels and population at risk. Groundwater <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> ranged from 0 to 3.4 mg/l in (n = 100) with 52% samples found unfit for drinking. Through geospatial IDW tool hotspot areas affected with low and high groundwater <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> levels were identified. Geochemical distribution in geological setups recognized sediment variation leads to high <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> (NaHCO<sub>3</sub>) and low <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> (CaHCO<sub>3</sub>) water types in low elevation (central plain) and high elevation (mountain foot) respectively. Results of the modified water quality index identified 60% samples to be unsuitable for drinking. Support vector machine (SVM), random forest regression (RFR) and classification and regression tree (CART) machine learning models found <math> <msup><mrow><mtext>Na</mtext></mrow> <mo>+</mo></msup> </math> , Salinity and <math> <msup><mrow><mtext>Ca</mtext></mrow> <mrow><mo>+</mo> <mn>2</mn></mrow> </msup> </math> as important contributing variables in groundwater <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> prediction. CART model with R<sup>2</sup> value of 0.732 outperformed RFR and SVM in predicting <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> . Noncarcinogenic health risk vulnerability from <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> increased from Adults < Teens < Children < Infants. Infants and children with hazard quotient values of 11.3 and 4.2 were the most vulnerable population at risk for consuming <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> contaminated groundwater. The research emphasizes on both nutritional need and hazardous effect of <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> , and development of desirable limit for <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> .</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"32"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochemical evolution, geostatistical mapping and machine learning predictive modeling of groundwater fluoride: a case study of western Balochistan, Quetta.\",\"authors\":\"Taimoor Shah Durrani, Malik Muhammad Akhtar, Kaleem U Kakar, Muhammad Najam Khan, Faiz Muhammad, Maqbool Khan, H Habibullah, Changaiz Khan\",\"doi\":\"10.1007/s10653-024-02335-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Around 2.6 billion people are at risk of tooth carries and fluorosis worldwide. Quetta is the worst affected district in Balochistan plateau. Endemic abnormal groundwater fluoride ( <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> ) lacks spatiotemporal studies. This research integrates geospatial distribution, geochemical signatures, and data driven method for evaluating <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> levels and population at risk. Groundwater <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> ranged from 0 to 3.4 mg/l in (n = 100) with 52% samples found unfit for drinking. Through geospatial IDW tool hotspot areas affected with low and high groundwater <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> levels were identified. Geochemical distribution in geological setups recognized sediment variation leads to high <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> (NaHCO<sub>3</sub>) and low <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> (CaHCO<sub>3</sub>) water types in low elevation (central plain) and high elevation (mountain foot) respectively. Results of the modified water quality index identified 60% samples to be unsuitable for drinking. Support vector machine (SVM), random forest regression (RFR) and classification and regression tree (CART) machine learning models found <math> <msup><mrow><mtext>Na</mtext></mrow> <mo>+</mo></msup> </math> , Salinity and <math> <msup><mrow><mtext>Ca</mtext></mrow> <mrow><mo>+</mo> <mn>2</mn></mrow> </msup> </math> as important contributing variables in groundwater <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> prediction. CART model with R<sup>2</sup> value of 0.732 outperformed RFR and SVM in predicting <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> . Noncarcinogenic health risk vulnerability from <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> increased from Adults < Teens < Children < Infants. Infants and children with hazard quotient values of 11.3 and 4.2 were the most vulnerable population at risk for consuming <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> contaminated groundwater. The research emphasizes on both nutritional need and hazardous effect of <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> , and development of desirable limit for <math> <msup><mrow><mtext>F</mtext></mrow> <mo>-</mo></msup> </math> .</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 2\",\"pages\":\"32\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02335-2\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02335-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

全世界约有26亿人面临长牙和氟中毒的风险。奎达是俾路支省高原受影响最严重的地区。地方性地下水异常氟化物(F -)缺乏时空研究。本研究整合了地理空间分布、地球化学特征和数据驱动方法来评估氟水平和高危人群。地下水氟含量为0至3.4毫克/升(n = 100),其中52%的样本不适合饮用。通过地理空间IDW工具,确定了地下水水位高低影响的热点区域。地质环境中的地球化学分布特征表明,沉积物变化导致低海拔(中原)和高海拔(山脚)地区分别形成高F - (NaHCO3)和低F - (CaHCO3)水类型。修正后的水质指数结果表明,60%的样本不适合饮用。支持向量机(SVM)、随机森林回归(RFR)和分类回归树(CART)机器学习模型发现Na +、盐度和Ca + 2是地下水F -预测的重要贡献变量。CART模型预测F -的R2值为0.732,优于RFR和SVM模型。非致癌性健康风险易受氟污染的地下水成人增加。研究重点是营养需求和F -的危害作用,以及F -适宜限量的制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geochemical evolution, geostatistical mapping and machine learning predictive modeling of groundwater fluoride: a case study of western Balochistan, Quetta.

Around 2.6 billion people are at risk of tooth carries and fluorosis worldwide. Quetta is the worst affected district in Balochistan plateau. Endemic abnormal groundwater fluoride ( F - ) lacks spatiotemporal studies. This research integrates geospatial distribution, geochemical signatures, and data driven method for evaluating F - levels and population at risk. Groundwater F - ranged from 0 to 3.4 mg/l in (n = 100) with 52% samples found unfit for drinking. Through geospatial IDW tool hotspot areas affected with low and high groundwater F - levels were identified. Geochemical distribution in geological setups recognized sediment variation leads to high F - (NaHCO3) and low F - (CaHCO3) water types in low elevation (central plain) and high elevation (mountain foot) respectively. Results of the modified water quality index identified 60% samples to be unsuitable for drinking. Support vector machine (SVM), random forest regression (RFR) and classification and regression tree (CART) machine learning models found Na + , Salinity and Ca + 2 as important contributing variables in groundwater F - prediction. CART model with R2 value of 0.732 outperformed RFR and SVM in predicting F - . Noncarcinogenic health risk vulnerability from F - increased from Adults < Teens < Children < Infants. Infants and children with hazard quotient values of 11.3 and 4.2 were the most vulnerable population at risk for consuming F - contaminated groundwater. The research emphasizes on both nutritional need and hazardous effect of F - , and development of desirable limit for F - .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信