Nam H K Nguyen, Roya Rafiee, Phani K Parcha, Abderrahmane Tagmount, Jeffrey Rubnitz, Raul Ribeiro, Xueyuan Cao, Stanley B Pounds, Christopher D Vulpe, Jatinder K Lamba
{"title":"全基因组CRISPR筛选鉴定预测儿科AML预后的AraC-Dauno-Eto (ADE)反应调节因子","authors":"Nam H K Nguyen, Roya Rafiee, Phani K Parcha, Abderrahmane Tagmount, Jeffrey Rubnitz, Raul Ribeiro, Xueyuan Cao, Stanley B Pounds, Christopher D Vulpe, Jatinder K Lamba","doi":"10.1182/bloodadvances.2024014157","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Cytarabine, daunorubicin, and etoposide (ADE) have been the standard backbone of induction chemotherapy regimen for patients with pediatric acute myeloid leukemia (pAML) for >5 decades. However, chemoresistance is still a major concern, and a significant proportion of pAML becomes resistant to ADE treatment and relapse, leading to poor survival. Therefore, there is a considerable need to identify mechanisms mediating drug resistance for overcoming chemoresistance. Herein, we performed synthetic lethal CRISPR/Cas9 screens using the ADE components to identify response markers. We further integrated significant markers in 3 independent pAML clinical cohorts treated with only an ADE regimen to identify drug response biomarkers with prognostic significance. We were able to identify several mediators that represent clinically and biologically significant marker genes for ADE treatment, such as BCL2, CLIP2, and VAV3, which are resistant markers to ADE, with high expression associated with poor outcomes in pAML treated with ADE, and GRPEL1, HCFC1, and TAF10, which are sensitive markers to ADE, with high expression showing beneficial outcomes. Notably, BCL2, CLIP2, and VAV3 knockdowns in their expression in AML cell lines sensitized the cells more to the ADE components, suggesting that these modulators should be further studied as potential therapeutic targets to overcome chemoresistance.</p>","PeriodicalId":9228,"journal":{"name":"Blood advances","volume":" ","pages":"1078-1091"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914169/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide CRISPR/Cas9 screen identifies AraC-daunorubicin-etoposide response modulators associated with outcomes in pediatric AML.\",\"authors\":\"Nam H K Nguyen, Roya Rafiee, Phani K Parcha, Abderrahmane Tagmount, Jeffrey Rubnitz, Raul Ribeiro, Xueyuan Cao, Stanley B Pounds, Christopher D Vulpe, Jatinder K Lamba\",\"doi\":\"10.1182/bloodadvances.2024014157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Cytarabine, daunorubicin, and etoposide (ADE) have been the standard backbone of induction chemotherapy regimen for patients with pediatric acute myeloid leukemia (pAML) for >5 decades. However, chemoresistance is still a major concern, and a significant proportion of pAML becomes resistant to ADE treatment and relapse, leading to poor survival. Therefore, there is a considerable need to identify mechanisms mediating drug resistance for overcoming chemoresistance. Herein, we performed synthetic lethal CRISPR/Cas9 screens using the ADE components to identify response markers. We further integrated significant markers in 3 independent pAML clinical cohorts treated with only an ADE regimen to identify drug response biomarkers with prognostic significance. We were able to identify several mediators that represent clinically and biologically significant marker genes for ADE treatment, such as BCL2, CLIP2, and VAV3, which are resistant markers to ADE, with high expression associated with poor outcomes in pAML treated with ADE, and GRPEL1, HCFC1, and TAF10, which are sensitive markers to ADE, with high expression showing beneficial outcomes. Notably, BCL2, CLIP2, and VAV3 knockdowns in their expression in AML cell lines sensitized the cells more to the ADE components, suggesting that these modulators should be further studied as potential therapeutic targets to overcome chemoresistance.</p>\",\"PeriodicalId\":9228,\"journal\":{\"name\":\"Blood advances\",\"volume\":\" \",\"pages\":\"1078-1091\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/bloodadvances.2024014157\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/bloodadvances.2024014157","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Genome-wide CRISPR/Cas9 screen identifies AraC-daunorubicin-etoposide response modulators associated with outcomes in pediatric AML.
Abstract: Cytarabine, daunorubicin, and etoposide (ADE) have been the standard backbone of induction chemotherapy regimen for patients with pediatric acute myeloid leukemia (pAML) for >5 decades. However, chemoresistance is still a major concern, and a significant proportion of pAML becomes resistant to ADE treatment and relapse, leading to poor survival. Therefore, there is a considerable need to identify mechanisms mediating drug resistance for overcoming chemoresistance. Herein, we performed synthetic lethal CRISPR/Cas9 screens using the ADE components to identify response markers. We further integrated significant markers in 3 independent pAML clinical cohorts treated with only an ADE regimen to identify drug response biomarkers with prognostic significance. We were able to identify several mediators that represent clinically and biologically significant marker genes for ADE treatment, such as BCL2, CLIP2, and VAV3, which are resistant markers to ADE, with high expression associated with poor outcomes in pAML treated with ADE, and GRPEL1, HCFC1, and TAF10, which are sensitive markers to ADE, with high expression showing beneficial outcomes. Notably, BCL2, CLIP2, and VAV3 knockdowns in their expression in AML cell lines sensitized the cells more to the ADE components, suggesting that these modulators should be further studied as potential therapeutic targets to overcome chemoresistance.
期刊介绍:
Blood Advances, a semimonthly medical journal published by the American Society of Hematology, marks the first addition to the Blood family in 70 years. This peer-reviewed, online-only, open-access journal was launched under the leadership of founding editor-in-chief Robert Negrin, MD, from Stanford University Medical Center in Stanford, CA, with its inaugural issue released on November 29, 2016.
Blood Advances serves as an international platform for original articles detailing basic laboratory, translational, and clinical investigations in hematology. The journal comprehensively covers all aspects of hematology, including disorders of leukocytes (both benign and malignant), erythrocytes, platelets, hemostatic mechanisms, vascular biology, immunology, and hematologic oncology. Each article undergoes a rigorous peer-review process, with selection based on the originality of the findings, the high quality of the work presented, and the clarity of the presentation.