与玻色-爱因斯坦凝聚储层连接的Rashba相互作用下双路Josephson结中的粒子电流

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Satoshi Kawaguchi
{"title":"与玻色-爱因斯坦凝聚储层连接的Rashba相互作用下双路Josephson结中的粒子电流","authors":"Satoshi Kawaguchi","doi":"10.1007/s13538-024-01641-5","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the properties of a double-path Josephson junction connected to Bose-Einstein condensate reservoirs. By comparing the current in the proposed setup with that in a similar system connected to superconductors, we elucidate the key differences between the two systems. The systems are influenced by the Aharonov-Bohm effect, Rashba spin-orbit interaction, and phase difference of order parameters between left and right leads. Utilizing the Keldysh formalism, it turns out that, in the system connected to Bose-Einstein condensate reservoirs, the Josephson current includes higher frequency components of the phase difference between left and right reservoirs. Additionally, the dependence of critical current on energy level does not show the complete symmetric resonance but the Fano-type resonance with single or double peaks. These differences result from the bosonic statistics of reservoirs.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13538-024-01641-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Particle Current in Double-Path Josephson Junction under Rashba Interaction Connected to Bose-Einstein Condensate Reservoirs\",\"authors\":\"Satoshi Kawaguchi\",\"doi\":\"10.1007/s13538-024-01641-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the properties of a double-path Josephson junction connected to Bose-Einstein condensate reservoirs. By comparing the current in the proposed setup with that in a similar system connected to superconductors, we elucidate the key differences between the two systems. The systems are influenced by the Aharonov-Bohm effect, Rashba spin-orbit interaction, and phase difference of order parameters between left and right leads. Utilizing the Keldysh formalism, it turns out that, in the system connected to Bose-Einstein condensate reservoirs, the Josephson current includes higher frequency components of the phase difference between left and right reservoirs. Additionally, the dependence of critical current on energy level does not show the complete symmetric resonance but the Fano-type resonance with single or double peaks. These differences result from the bosonic statistics of reservoirs.</p></div>\",\"PeriodicalId\":499,\"journal\":{\"name\":\"Brazilian Journal of Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13538-024-01641-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13538-024-01641-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-024-01641-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与玻色-爱因斯坦凝聚态相连接的双路约瑟夫森结的性质。通过将所提出的装置中的电流与连接超导体的类似系统中的电流进行比较,我们阐明了两个系统之间的关键区别。系统受Aharonov-Bohm效应、Rashba自旋轨道相互作用和左右导联序参量相位差的影响。利用Keldysh的形式,结果表明,在与Bose-Einstein凝析气藏相连的系统中,约瑟夫森电流包含了左右储层之间相位差的高频成分。此外,临界电流对能级的依赖关系并不是完全对称共振,而是单峰或双峰的fano型共振。这些差异是由储层的玻色子统计造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Current in Double-Path Josephson Junction under Rashba Interaction Connected to Bose-Einstein Condensate Reservoirs

We investigate the properties of a double-path Josephson junction connected to Bose-Einstein condensate reservoirs. By comparing the current in the proposed setup with that in a similar system connected to superconductors, we elucidate the key differences between the two systems. The systems are influenced by the Aharonov-Bohm effect, Rashba spin-orbit interaction, and phase difference of order parameters between left and right leads. Utilizing the Keldysh formalism, it turns out that, in the system connected to Bose-Einstein condensate reservoirs, the Josephson current includes higher frequency components of the phase difference between left and right reservoirs. Additionally, the dependence of critical current on energy level does not show the complete symmetric resonance but the Fano-type resonance with single or double peaks. These differences result from the bosonic statistics of reservoirs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Physics
Brazilian Journal of Physics 物理-物理:综合
CiteScore
2.50
自引率
6.20%
发文量
189
审稿时长
6.0 months
期刊介绍: The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信