空间中的链路识别路由体系结构

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Hefan Zhang;Zhiyuan Wang;Shan Zhang;Qingkai Meng;Hongbin Luo
{"title":"空间中的链路识别路由体系结构","authors":"Hefan Zhang;Zhiyuan Wang;Shan Zhang;Qingkai Meng;Hongbin Luo","doi":"10.1109/TNSE.2024.3498042","DOIUrl":null,"url":null,"abstract":"Low earth orbit (LEO) satellite networks have the potential to provide low-latency communication with global coverage. To unleash this potential, it is crucial to achieve efficient packet delivery. In this paper, we propose a Link-identified Routing (LiR) architecture for LEO satellite networks. The LiR architecture leverages the deterministic neighbor relation of LEO constellations, and identifies each inter-satellite link (ISL). Moreover, LiR architecture adopts source-route-style forwarding based on in-packet bloom filter (BF). Each satellite could efficiently encode multiple ISL identifiers via an in-packet BF to specify the end-to-end path for the packets. Due to false positives caused by BF, the more ISLs are encoded at a time, the more redundant forwarding cases emerge. Based on the topology characteristics, we derive the expected forwarding overhead in a closed-form and propose the optimal encoding policy. To accommodate link-state changes in LEO satellite networks, we propose the on-demand rerouting scheme and the on-demand detouring scheme to address the intermittent ISLs. We also elaborate how to take advantage of LiR architecture to achieve seamless handover for ground-satellite links (GSLs). Finally, we conduct extensive numerical experiments and packet-level simulations to verify our analytical results and evaluate the performance of the LiR architecture.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 1","pages":"392-408"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Link-Identified Routing Architecture in Space\",\"authors\":\"Hefan Zhang;Zhiyuan Wang;Shan Zhang;Qingkai Meng;Hongbin Luo\",\"doi\":\"10.1109/TNSE.2024.3498042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low earth orbit (LEO) satellite networks have the potential to provide low-latency communication with global coverage. To unleash this potential, it is crucial to achieve efficient packet delivery. In this paper, we propose a Link-identified Routing (LiR) architecture for LEO satellite networks. The LiR architecture leverages the deterministic neighbor relation of LEO constellations, and identifies each inter-satellite link (ISL). Moreover, LiR architecture adopts source-route-style forwarding based on in-packet bloom filter (BF). Each satellite could efficiently encode multiple ISL identifiers via an in-packet BF to specify the end-to-end path for the packets. Due to false positives caused by BF, the more ISLs are encoded at a time, the more redundant forwarding cases emerge. Based on the topology characteristics, we derive the expected forwarding overhead in a closed-form and propose the optimal encoding policy. To accommodate link-state changes in LEO satellite networks, we propose the on-demand rerouting scheme and the on-demand detouring scheme to address the intermittent ISLs. We also elaborate how to take advantage of LiR architecture to achieve seamless handover for ground-satellite links (GSLs). Finally, we conduct extensive numerical experiments and packet-level simulations to verify our analytical results and evaluate the performance of the LiR architecture.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"12 1\",\"pages\":\"392-408\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752978/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752978/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

低地球轨道(LEO)卫星网络具有提供全球覆盖的低延迟通信的潜力。为了释放这种潜力,实现高效的数据包传递至关重要。本文提出了一种用于低轨道卫星网络的链路识别路由(LiR)体系结构。LiR架构利用LEO星座的确定性近邻关系,识别每个卫星间链路(ISL)。此外,LiR架构采用了基于包内布隆过滤器(BF)的源路由式转发。每个卫星可以通过包内BF有效地编码多个ISL标识符,以指定包的端到端路径。由于BF引起的假阳性,每次编码的isl越多,出现的冗余转发情况就越多。根据拓扑结构的特点,以封闭形式导出了期望转发开销,并提出了最优的编码策略。为了适应低轨道卫星网络中链路状态的变化,我们提出了按需重路由方案和按需绕行方案来解决间歇性isl问题。我们还详细阐述了如何利用LiR架构实现地面卫星链路(GSLs)的无缝切换。最后,我们进行了大量的数值实验和分组级模拟来验证我们的分析结果并评估LiR架构的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Link-Identified Routing Architecture in Space
Low earth orbit (LEO) satellite networks have the potential to provide low-latency communication with global coverage. To unleash this potential, it is crucial to achieve efficient packet delivery. In this paper, we propose a Link-identified Routing (LiR) architecture for LEO satellite networks. The LiR architecture leverages the deterministic neighbor relation of LEO constellations, and identifies each inter-satellite link (ISL). Moreover, LiR architecture adopts source-route-style forwarding based on in-packet bloom filter (BF). Each satellite could efficiently encode multiple ISL identifiers via an in-packet BF to specify the end-to-end path for the packets. Due to false positives caused by BF, the more ISLs are encoded at a time, the more redundant forwarding cases emerge. Based on the topology characteristics, we derive the expected forwarding overhead in a closed-form and propose the optimal encoding policy. To accommodate link-state changes in LEO satellite networks, we propose the on-demand rerouting scheme and the on-demand detouring scheme to address the intermittent ISLs. We also elaborate how to take advantage of LiR architecture to achieve seamless handover for ground-satellite links (GSLs). Finally, we conduct extensive numerical experiments and packet-level simulations to verify our analytical results and evaluate the performance of the LiR architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信