{"title":"基于图表示学习的工业物联网分布式按需路由算法","authors":"Bin Dai;Hetao Li;Wenrui Huang","doi":"10.1109/TNSE.2024.3496438","DOIUrl":null,"url":null,"abstract":"Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To tackle the challenge, we propose a distributed routing model that leverages graph representation learning (GRL) to learn the optimal routing decision in a distributed manner. We further present on-demand routing algorithms composed of graph representation learning (GRL)-based feature engineering and DRL-based routing decision-making to meet differential QoS requirements. Experimental results demonstrate our approach outperforms state-of-the-art DRL-based routing algorithms in a distributed manner, particularly in large-scale and heavy-load networks.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 1","pages":"332-343"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed On-Demand Routing Algorithm With Graph Representation Learning for Industrial IoT\",\"authors\":\"Bin Dai;Hetao Li;Wenrui Huang\",\"doi\":\"10.1109/TNSE.2024.3496438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To tackle the challenge, we propose a distributed routing model that leverages graph representation learning (GRL) to learn the optimal routing decision in a distributed manner. We further present on-demand routing algorithms composed of graph representation learning (GRL)-based feature engineering and DRL-based routing decision-making to meet differential QoS requirements. Experimental results demonstrate our approach outperforms state-of-the-art DRL-based routing algorithms in a distributed manner, particularly in large-scale and heavy-load networks.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"12 1\",\"pages\":\"332-343\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10753084/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10753084/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Distributed On-Demand Routing Algorithm With Graph Representation Learning for Industrial IoT
Emerging industrial Internet-of-Things (IoT) applications demand diverse and critical Quality of Service (QoS). Deep reinforcement learning (DRL)-based routing approaches offer promise but struggle with scalability and convergence, particularly when dealing with graph-based network information. To tackle the challenge, we propose a distributed routing model that leverages graph representation learning (GRL) to learn the optimal routing decision in a distributed manner. We further present on-demand routing algorithms composed of graph representation learning (GRL)-based feature engineering and DRL-based routing decision-making to meet differential QoS requirements. Experimental results demonstrate our approach outperforms state-of-the-art DRL-based routing algorithms in a distributed manner, particularly in large-scale and heavy-load networks.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.