迈向理解不可靠网络上的联邦学习

Chenyuan Feng;Ahmed Arafa;Zihan Chen;Mingxiong Zhao;Tony Q. S. Quek;Howard H. Yang
{"title":"迈向理解不可靠网络上的联邦学习","authors":"Chenyuan Feng;Ahmed Arafa;Zihan Chen;Mingxiong Zhao;Tony Q. S. Quek;Howard H. Yang","doi":"10.1109/TMLCN.2024.3511475","DOIUrl":null,"url":null,"abstract":"This paper studies the efficiency of training a statistical model among an edge server and multiple clients via Federated Learning (FL) – a machine learning method that preserves data privacy in the training process – over wireless networks. Due to unreliable wireless channels and constrained communication resources, the server can only choose a handful of clients for parameter updates during each communication round. To address this issue, analytical expressions are derived to characterize the FL convergence rate, accounting for key features from both communication and algorithmic aspects, including transmission reliability, scheduling policies, and momentum method. First, the analysis reveals that either delicately designed user scheduling policies or expanding higher bandwidth to accommodate more clients in each communication round can expedite model training in networks with reliable connections. However, these methods become ineffective when the connection is erratic. Second, it has been verified that incorporating the momentum method into the model training algorithm accelerates the rate of convergence and provides greater resilience against transmission failures. Last, extensive empirical simulations are provided to verify these theoretical discoveries and enhancements in performance.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"80-97"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777576","citationCount":"0","resultStr":"{\"title\":\"Toward Understanding Federated Learning over Unreliable Networks\",\"authors\":\"Chenyuan Feng;Ahmed Arafa;Zihan Chen;Mingxiong Zhao;Tony Q. S. Quek;Howard H. Yang\",\"doi\":\"10.1109/TMLCN.2024.3511475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the efficiency of training a statistical model among an edge server and multiple clients via Federated Learning (FL) – a machine learning method that preserves data privacy in the training process – over wireless networks. Due to unreliable wireless channels and constrained communication resources, the server can only choose a handful of clients for parameter updates during each communication round. To address this issue, analytical expressions are derived to characterize the FL convergence rate, accounting for key features from both communication and algorithmic aspects, including transmission reliability, scheduling policies, and momentum method. First, the analysis reveals that either delicately designed user scheduling policies or expanding higher bandwidth to accommodate more clients in each communication round can expedite model training in networks with reliable connections. However, these methods become ineffective when the connection is erratic. Second, it has been verified that incorporating the momentum method into the model training algorithm accelerates the rate of convergence and provides greater resilience against transmission failures. Last, extensive empirical simulations are provided to verify these theoretical discoveries and enhancements in performance.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"3 \",\"pages\":\"80-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777576/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10777576/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在无线网络上,通过联邦学习(FL)——一种在训练过程中保护数据隐私的机器学习方法——在边缘服务器和多个客户端之间训练统计模型的效率。由于无线信道不可靠和通信资源受限,服务器在每一轮通信中只能选择少数几个客户端进行参数更新。为了解决这一问题,推导了表征FL收敛速率的解析表达式,考虑了通信和算法方面的关键特征,包括传输可靠性、调度策略和动量方法。首先,分析表明,无论是精心设计用户调度策略,还是在每一轮通信中扩展更高的带宽以容纳更多的客户端,都可以加速具有可靠连接的网络中的模型训练。但是,当连接不稳定时,这些方法就失效了。其次,已经验证了将动量方法纳入模型训练算法可以加快收敛速度,并对传输故障提供更大的弹性。最后,提供了广泛的经验模拟来验证这些理论发现和性能的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Understanding Federated Learning over Unreliable Networks
This paper studies the efficiency of training a statistical model among an edge server and multiple clients via Federated Learning (FL) – a machine learning method that preserves data privacy in the training process – over wireless networks. Due to unreliable wireless channels and constrained communication resources, the server can only choose a handful of clients for parameter updates during each communication round. To address this issue, analytical expressions are derived to characterize the FL convergence rate, accounting for key features from both communication and algorithmic aspects, including transmission reliability, scheduling policies, and momentum method. First, the analysis reveals that either delicately designed user scheduling policies or expanding higher bandwidth to accommodate more clients in each communication round can expedite model training in networks with reliable connections. However, these methods become ineffective when the connection is erratic. Second, it has been verified that incorporating the momentum method into the model training algorithm accelerates the rate of convergence and provides greater resilience against transmission failures. Last, extensive empirical simulations are provided to verify these theoretical discoveries and enhancements in performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信