用随机森林回归法预测230 nm处AlN单晶中的杂质浓度

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2024-12-05 DOI:10.1039/D4CE00813H
Andrew Klump, Carsten Hartmann, Matthias Bickermann and Thomas Straubinger
{"title":"用随机森林回归法预测230 nm处AlN单晶中的杂质浓度","authors":"Andrew Klump, Carsten Hartmann, Matthias Bickermann and Thomas Straubinger","doi":"10.1039/D4CE00813H","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a rapid and non-destructive impurity characterization method using UV absorption spectroscopy that is calibrated against secondary ion mass spectrometry (SIMS) data. A random forest regression model was evaluated for carbon, oxygen, and silicon impurity prediction based on absorption spectra. AlN boules were grown using the seeded PVT method with tungsten crucibles, processed into wafers, and characterized. A matrix of 37 samples with varying impurity concentrations in the range 1 × 10<small><sup>17</sup></small> to 5 × 10<small><sup>19</sup></small> cm<small><sup>−3</sup></small> was created using element-specific doping methods. SIMS and absorption spectroscopy data revealed characteristic absorption patterns for different impurities. Absorption at 230 nm, which is a crucial wavelength for UVC-LEDs, correlated well with the overall impurity concentration. The random forest model predicted impurity concentrations accurately when similar training data were available, but high prediction errors occurred for unique impurity profiles. To improve prediction accuracy, a more extensive sample series and/or more complex AI tools are required.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 2","pages":" 184-190"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of impurity concentrations in AlN single crystals by absorption at 230 nm using random forest regression†\",\"authors\":\"Andrew Klump, Carsten Hartmann, Matthias Bickermann and Thomas Straubinger\",\"doi\":\"10.1039/D4CE00813H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study introduces a rapid and non-destructive impurity characterization method using UV absorption spectroscopy that is calibrated against secondary ion mass spectrometry (SIMS) data. A random forest regression model was evaluated for carbon, oxygen, and silicon impurity prediction based on absorption spectra. AlN boules were grown using the seeded PVT method with tungsten crucibles, processed into wafers, and characterized. A matrix of 37 samples with varying impurity concentrations in the range 1 × 10<small><sup>17</sup></small> to 5 × 10<small><sup>19</sup></small> cm<small><sup>−3</sup></small> was created using element-specific doping methods. SIMS and absorption spectroscopy data revealed characteristic absorption patterns for different impurities. Absorption at 230 nm, which is a crucial wavelength for UVC-LEDs, correlated well with the overall impurity concentration. The random forest model predicted impurity concentrations accurately when similar training data were available, but high prediction errors occurred for unique impurity profiles. To improve prediction accuracy, a more extensive sample series and/or more complex AI tools are required.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 2\",\"pages\":\" 184-190\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00813h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00813h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种利用紫外吸收光谱对次级离子质谱(SIMS)数据进行校准的快速无损杂质表征方法。采用随机森林回归模型对碳、氧、硅杂质进行了吸收光谱预测。采用种子PVT法在钨坩埚中生长AlN球,加工成晶圆,并对其进行表征。采用元素特异性掺杂方法制备了含有37个样品的基质,其杂质浓度在1 × 1017至5 × 1019 cm−3范围内。SIMS和吸收光谱数据揭示了不同杂质的特征吸收模式。在uvc - led的关键波长230nm处的吸收与杂质的总体浓度有很好的相关性。当有相似的训练数据时,随机森林模型可以准确地预测杂质浓度,但对于独特的杂质分布,预测误差很大。为了提高预测精度,需要更广泛的样本系列和/或更复杂的人工智能工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of impurity concentrations in AlN single crystals by absorption at 230 nm using random forest regression†

Prediction of impurity concentrations in AlN single crystals by absorption at 230 nm using random forest regression†

This study introduces a rapid and non-destructive impurity characterization method using UV absorption spectroscopy that is calibrated against secondary ion mass spectrometry (SIMS) data. A random forest regression model was evaluated for carbon, oxygen, and silicon impurity prediction based on absorption spectra. AlN boules were grown using the seeded PVT method with tungsten crucibles, processed into wafers, and characterized. A matrix of 37 samples with varying impurity concentrations in the range 1 × 1017 to 5 × 1019 cm−3 was created using element-specific doping methods. SIMS and absorption spectroscopy data revealed characteristic absorption patterns for different impurities. Absorption at 230 nm, which is a crucial wavelength for UVC-LEDs, correlated well with the overall impurity concentration. The random forest model predicted impurity concentrations accurately when similar training data were available, but high prediction errors occurred for unique impurity profiles. To improve prediction accuracy, a more extensive sample series and/or more complex AI tools are required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信