带噪声输入的ARMAX模型辨识:一种参数频域解

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shenglin Song;Erliang Zhang
{"title":"带噪声输入的ARMAX模型辨识:一种参数频域解","authors":"Shenglin Song;Erliang Zhang","doi":"10.1109/TSP.2024.3522300","DOIUrl":null,"url":null,"abstract":"This paper deals with frequency domain parametric identification of ARMAX models when the input is corrupted by white noise. By means of a multivariate ARMA representation, the ARMAX model within the errors-in-variables (EIV) framework is identified by a successive two-stage approach, and all the parameter estimates of the dynamic EIV model are further jointly tuned to achieve minimum variance among unbiased estimators using second-order statistics of input-output data. Sufficient conditions are constructed to obtain the identifiability of the EIV-ARMAX model as well as the multivariate ARMA process. The consistency of the estimator is analyzed, and the uncertainty bound of the estimate is also provided and compared with the Cramér-Rao lower bound. The performance of the proposed method is demonstrated via numerical and real examples.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"292-304"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of ARMAX Models With Noisy Input: A Parametric Frequency Domain Solution\",\"authors\":\"Shenglin Song;Erliang Zhang\",\"doi\":\"10.1109/TSP.2024.3522300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with frequency domain parametric identification of ARMAX models when the input is corrupted by white noise. By means of a multivariate ARMA representation, the ARMAX model within the errors-in-variables (EIV) framework is identified by a successive two-stage approach, and all the parameter estimates of the dynamic EIV model are further jointly tuned to achieve minimum variance among unbiased estimators using second-order statistics of input-output data. Sufficient conditions are constructed to obtain the identifiability of the EIV-ARMAX model as well as the multivariate ARMA process. The consistency of the estimator is analyzed, and the uncertainty bound of the estimate is also provided and compared with the Cramér-Rao lower bound. The performance of the proposed method is demonstrated via numerical and real examples.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"292-304\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10813006/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10813006/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了输入信号受白噪声干扰时ARMAX模型的频域参数辨识问题。通过多元ARMA表示,采用连续两阶段方法识别变量误差(EIV)框架内的ARMAX模型,并利用输入输出数据的二阶统计量进一步联合调整动态EIV模型的所有参数估计,以实现无偏估计之间的方差最小。构造了EIV-ARMAX模型和多元ARMA过程的可辨识性的充分条件。分析了估计量的一致性,给出了估计量的不确定性界,并与cram - rao下界进行了比较。通过数值和实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of ARMAX Models With Noisy Input: A Parametric Frequency Domain Solution
This paper deals with frequency domain parametric identification of ARMAX models when the input is corrupted by white noise. By means of a multivariate ARMA representation, the ARMAX model within the errors-in-variables (EIV) framework is identified by a successive two-stage approach, and all the parameter estimates of the dynamic EIV model are further jointly tuned to achieve minimum variance among unbiased estimators using second-order statistics of input-output data. Sufficient conditions are constructed to obtain the identifiability of the EIV-ARMAX model as well as the multivariate ARMA process. The consistency of the estimator is analyzed, and the uncertainty bound of the estimate is also provided and compared with the Cramér-Rao lower bound. The performance of the proposed method is demonstrated via numerical and real examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信