{"title":"VEPerform:一个用于评估不同效果预测器性能的web资源。","authors":"Cindy Zhang, Frederick P Roth","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Computational variant effect predictors (VEPs) are providing increasingly strong evidence to classify the pathogenicity of missense variants. Precision vs. recall analysis is useful in evaluating VEP performance, especially when adjusted for imbalanced test sets. Here, we describe VEPerform, a web-based tool for evaluating the performance of VEPs at the gene level using balanced precision vs. recall curve (BPRC) analysis.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661297/pdf/","citationCount":"0","resultStr":"{\"title\":\"VEPerform: a web resource for evaluating the performance of variant effect predictors.\",\"authors\":\"Cindy Zhang, Frederick P Roth\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational variant effect predictors (VEPs) are providing increasingly strong evidence to classify the pathogenicity of missense variants. Precision vs. recall analysis is useful in evaluating VEP performance, especially when adjusted for imbalanced test sets. Here, we describe VEPerform, a web-based tool for evaluating the performance of VEPs at the gene level using balanced precision vs. recall curve (BPRC) analysis.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661297/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VEPerform: a web resource for evaluating the performance of variant effect predictors.
Computational variant effect predictors (VEPs) are providing increasingly strong evidence to classify the pathogenicity of missense variants. Precision vs. recall analysis is useful in evaluating VEP performance, especially when adjusted for imbalanced test sets. Here, we describe VEPerform, a web-based tool for evaluating the performance of VEPs at the gene level using balanced precision vs. recall curve (BPRC) analysis.