VEPerform:一个用于评估不同效果预测器性能的web资源。

ArXiv Pub Date : 2024-12-13
Cindy Zhang, Frederick P Roth
{"title":"VEPerform:一个用于评估不同效果预测器性能的web资源。","authors":"Cindy Zhang, Frederick P Roth","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Computational variant effect predictors (VEPs) are providing increasingly strong evidence to classify the pathogenicity of missense variants. Precision vs. recall analysis is useful in evaluating VEP performance, especially when adjusted for imbalanced test sets. Here, we describe VEPerform, a web-based tool for evaluating the performance of VEPs at the gene level using balanced precision vs. recall curve (BPRC) analysis.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661297/pdf/","citationCount":"0","resultStr":"{\"title\":\"VEPerform: a web resource for evaluating the performance of variant effect predictors.\",\"authors\":\"Cindy Zhang, Frederick P Roth\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational variant effect predictors (VEPs) are providing increasingly strong evidence to classify the pathogenicity of missense variants. Precision vs. recall analysis is useful in evaluating VEP performance, especially when adjusted for imbalanced test sets. Here, we describe VEPerform, a web-based tool for evaluating the performance of VEPs at the gene level using balanced precision vs. recall curve (BPRC) analysis.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661297/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算变异效应预测因子(VEPs)为错义变异的致病性分类提供了越来越有力的证据。精确率与召回率分析在评估VEP性能时很有用,特别是在针对不平衡测试集进行调整时。在这里,我们描述了VEPerform,一个基于网络的工具,用于评估vep在基因水平上的表现,使用平衡精度与召回曲线(BPRC)分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VEPerform: a web resource for evaluating the performance of variant effect predictors.

Computational variant effect predictors (VEPs) are providing increasingly strong evidence to classify the pathogenicity of missense variants. Precision vs. recall analysis is useful in evaluating VEP performance, especially when adjusted for imbalanced test sets. Here, we describe VEPerform, a web-based tool for evaluating the performance of VEPs at the gene level using balanced precision vs. recall curve (BPRC) analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信