Hao-Nan Zhu , Yi-Fan Guo , YingMin Lin , Zhi-Chao Sun , Xi Zhu , YuanZhe Li
{"title":"胸部CT对乳腺癌骨转移前胸椎骨髓微环境变化的放射组学分析。","authors":"Hao-Nan Zhu , Yi-Fan Guo , YingMin Lin , Zhi-Chao Sun , Xi Zhu , YuanZhe Li","doi":"10.1016/j.jbo.2024.100653","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Bone metastasis from breast cancer significantly elevates patient morbidity and mortality, making early detection crucial for improving outcomes. This study utilizes radiomics to analyze changes in the thoracic vertebral bone marrow microenvironment from chest computerized tomography (CT) images prior to bone metastasis in breast cancer, and constructs a model to predict metastasis. Methods: This study retrospectively gathered data from breast cancer patients who were diagnosed and continuously monitored for five years from January 2013 to September 2023. Radiomic features were extracted from the bone marrow of thoracic vertebrae on non-contrast chest CT scans. Multiple machine learning algorithms were utilized to construct various radiomics models for predicting the risk of bone metastasis, and the model with optimal performance was integrated with clinical features to develop a nomogram. The effectiveness of this combined model was assessed through receiver operating characteristic (ROC) analysis as well as decision curve analysis (DCA). Results: The study included a total of 106 patients diagnosed with breast cancer, among whom 37 developed bone metastases within five years. The radiomics model’s area under the curve (AUC) for the test set, calculated using logistic regression, is 0.929, demonstrating superior predictive performance compared to alternative machine learning models. Furthermore, DCA demonstrated the potential of radiomics models in clinical application, with a greater clinical benefit in predicting bone metastasis than clinical model and nomogram. Conclusion: CT-based radiomics can capture subtle changes in the thoracic vertebral bone marrow before breast cancer bone metastasis, offering a predictive tool for early detection of bone metastasis in breast cancer.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"50 ","pages":"Article 100653"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655691/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomics analysis of thoracic vertebral bone marrow microenvironment changes before bone metastasis of breast cancer based on chest CT\",\"authors\":\"Hao-Nan Zhu , Yi-Fan Guo , YingMin Lin , Zhi-Chao Sun , Xi Zhu , YuanZhe Li\",\"doi\":\"10.1016/j.jbo.2024.100653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Bone metastasis from breast cancer significantly elevates patient morbidity and mortality, making early detection crucial for improving outcomes. This study utilizes radiomics to analyze changes in the thoracic vertebral bone marrow microenvironment from chest computerized tomography (CT) images prior to bone metastasis in breast cancer, and constructs a model to predict metastasis. Methods: This study retrospectively gathered data from breast cancer patients who were diagnosed and continuously monitored for five years from January 2013 to September 2023. Radiomic features were extracted from the bone marrow of thoracic vertebrae on non-contrast chest CT scans. Multiple machine learning algorithms were utilized to construct various radiomics models for predicting the risk of bone metastasis, and the model with optimal performance was integrated with clinical features to develop a nomogram. The effectiveness of this combined model was assessed through receiver operating characteristic (ROC) analysis as well as decision curve analysis (DCA). Results: The study included a total of 106 patients diagnosed with breast cancer, among whom 37 developed bone metastases within five years. The radiomics model’s area under the curve (AUC) for the test set, calculated using logistic regression, is 0.929, demonstrating superior predictive performance compared to alternative machine learning models. Furthermore, DCA demonstrated the potential of radiomics models in clinical application, with a greater clinical benefit in predicting bone metastasis than clinical model and nomogram. Conclusion: CT-based radiomics can capture subtle changes in the thoracic vertebral bone marrow before breast cancer bone metastasis, offering a predictive tool for early detection of bone metastasis in breast cancer.</div></div>\",\"PeriodicalId\":48806,\"journal\":{\"name\":\"Journal of Bone Oncology\",\"volume\":\"50 \",\"pages\":\"Article 100653\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212137424001337\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001337","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Radiomics analysis of thoracic vertebral bone marrow microenvironment changes before bone metastasis of breast cancer based on chest CT
Background
Bone metastasis from breast cancer significantly elevates patient morbidity and mortality, making early detection crucial for improving outcomes. This study utilizes radiomics to analyze changes in the thoracic vertebral bone marrow microenvironment from chest computerized tomography (CT) images prior to bone metastasis in breast cancer, and constructs a model to predict metastasis. Methods: This study retrospectively gathered data from breast cancer patients who were diagnosed and continuously monitored for five years from January 2013 to September 2023. Radiomic features were extracted from the bone marrow of thoracic vertebrae on non-contrast chest CT scans. Multiple machine learning algorithms were utilized to construct various radiomics models for predicting the risk of bone metastasis, and the model with optimal performance was integrated with clinical features to develop a nomogram. The effectiveness of this combined model was assessed through receiver operating characteristic (ROC) analysis as well as decision curve analysis (DCA). Results: The study included a total of 106 patients diagnosed with breast cancer, among whom 37 developed bone metastases within five years. The radiomics model’s area under the curve (AUC) for the test set, calculated using logistic regression, is 0.929, demonstrating superior predictive performance compared to alternative machine learning models. Furthermore, DCA demonstrated the potential of radiomics models in clinical application, with a greater clinical benefit in predicting bone metastasis than clinical model and nomogram. Conclusion: CT-based radiomics can capture subtle changes in the thoracic vertebral bone marrow before breast cancer bone metastasis, offering a predictive tool for early detection of bone metastasis in breast cancer.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.