人工智能在ICU中辅助人类临床推理:超越“犯错即是人”。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-12-04 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1506676
Khalil El Gharib, Bakr Jundi, David Furfaro, Raja-Elie E Abdulnour
{"title":"人工智能在ICU中辅助人类临床推理:超越“犯错即是人”。","authors":"Khalil El Gharib, Bakr Jundi, David Furfaro, Raja-Elie E Abdulnour","doi":"10.3389/frai.2024.1506676","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnostic errors pose a significant public health challenge, affecting nearly 800,000 Americans annually, with even higher rates globally. In the ICU, these errors are particularly prevalent, leading to substantial morbidity and mortality. The clinical reasoning process aims to reduce diagnostic uncertainty and establish a plausible differential diagnosis but is often hindered by cognitive load, patient complexity, and clinician burnout. These factors contribute to cognitive biases that compromise diagnostic accuracy. Emerging technologies like large language models (LLMs) offer potential solutions to enhance clinical reasoning and improve diagnostic precision. In this perspective article, we explore the roles of LLMs, such as GPT-4, in addressing diagnostic challenges in critical care settings through a case study of a critically ill patient managed with LLM assistance.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1506676"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659639/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-assisted human clinical reasoning in the ICU: beyond \\\"to err is human\\\".\",\"authors\":\"Khalil El Gharib, Bakr Jundi, David Furfaro, Raja-Elie E Abdulnour\",\"doi\":\"10.3389/frai.2024.1506676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diagnostic errors pose a significant public health challenge, affecting nearly 800,000 Americans annually, with even higher rates globally. In the ICU, these errors are particularly prevalent, leading to substantial morbidity and mortality. The clinical reasoning process aims to reduce diagnostic uncertainty and establish a plausible differential diagnosis but is often hindered by cognitive load, patient complexity, and clinician burnout. These factors contribute to cognitive biases that compromise diagnostic accuracy. Emerging technologies like large language models (LLMs) offer potential solutions to enhance clinical reasoning and improve diagnostic precision. In this perspective article, we explore the roles of LLMs, such as GPT-4, in addressing diagnostic challenges in critical care settings through a case study of a critically ill patient managed with LLM assistance.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1506676\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1506676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1506676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

诊断错误构成了重大的公共卫生挑战,每年影响近80万美国人,在全球范围内甚至更高。在ICU,这些错误尤其普遍,导致大量的发病率和死亡率。临床推理过程旨在减少诊断的不确定性,并建立一个合理的鉴别诊断,但往往受阻于认知负荷,病人的复杂性,和临床医生的倦怠。这些因素会导致认知偏差,从而影响诊断的准确性。大型语言模型(llm)等新兴技术为增强临床推理和提高诊断精度提供了潜在的解决方案。在这篇观点文章中,我们探讨了法学硕士(如GPT-4)在解决重症监护环境中的诊断挑战方面的作用,通过一个由法学硕士协助管理的危重病患者的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-assisted human clinical reasoning in the ICU: beyond "to err is human".

Diagnostic errors pose a significant public health challenge, affecting nearly 800,000 Americans annually, with even higher rates globally. In the ICU, these errors are particularly prevalent, leading to substantial morbidity and mortality. The clinical reasoning process aims to reduce diagnostic uncertainty and establish a plausible differential diagnosis but is often hindered by cognitive load, patient complexity, and clinician burnout. These factors contribute to cognitive biases that compromise diagnostic accuracy. Emerging technologies like large language models (LLMs) offer potential solutions to enhance clinical reasoning and improve diagnostic precision. In this perspective article, we explore the roles of LLMs, such as GPT-4, in addressing diagnostic challenges in critical care settings through a case study of a critically ill patient managed with LLM assistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信