初级保健临床医生对综合电脑化胰岛素剂量调整算法的有效使用。

IF 4.1 Q2 ENDOCRINOLOGY & METABOLISM
Mayer B Davidson
{"title":"初级保健临床医生对综合电脑化胰岛素剂量调整算法的有效使用。","authors":"Mayer B Davidson","doi":"10.1177/19322968241306127","DOIUrl":null,"url":null,"abstract":"<p><p>Primary care clinicians (PCCs) manage 90% of patients with diabetes, 30% of whom require insulin with a substantial number poorly controlled because of the challenges that PCCs face (time constraints and lack of experience). The author has developed Federal Drug Administration cleared and Conformite Europeenne mark registered comprehensive computerized insulin dose adjustment algorithms (CIDAAs) to enable PCCs to significantly lower HbA1c levels in insulin-requiring patients. Reports sent to PCCs contain scatter plots of glucose readings, their organization into pre- and postprandial and before bedtime values, their analyses, and recommendations for insulin dose adjustments (if indicated) that the PCC can accept or modify. The glucose readings are provided to the CIDAAs for analysis at either in-person visits or remotely. The new doses accepted by PCCs serve as the basis for the subsequent report. Published studies evaluating this comprehensive CIDAA involved 104 poorly controlled patients taking insulin for greater than or equal to six months who were independently managed by PCCs. Over four to six months, initial HbA1c levels of 9.7% fell by 1.7%. Combining these results with 138 other better controlled patients in real-world situations, initial measured and estimated HbA1c levels of 8.3% fell by 0.7% in 6.4 months enabling PCCs to significantly improve glycemic control. Other advantages of PCCs utilizing these comprehensive CIDAAs are saving time for PCCs so that they can address non-diabetes issues and/or see other patients and ongoing PCC education in adjusting insulin doses by matching glucose patterns and dose-change recommendations with subsequent glycemic responses.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"19322968241306127"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664563/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Effective Use by Primary Care Clinicians of a Comprehensive Computerized Insulin Dose Adjustment Algorithm.\",\"authors\":\"Mayer B Davidson\",\"doi\":\"10.1177/19322968241306127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary care clinicians (PCCs) manage 90% of patients with diabetes, 30% of whom require insulin with a substantial number poorly controlled because of the challenges that PCCs face (time constraints and lack of experience). The author has developed Federal Drug Administration cleared and Conformite Europeenne mark registered comprehensive computerized insulin dose adjustment algorithms (CIDAAs) to enable PCCs to significantly lower HbA1c levels in insulin-requiring patients. Reports sent to PCCs contain scatter plots of glucose readings, their organization into pre- and postprandial and before bedtime values, their analyses, and recommendations for insulin dose adjustments (if indicated) that the PCC can accept or modify. The glucose readings are provided to the CIDAAs for analysis at either in-person visits or remotely. The new doses accepted by PCCs serve as the basis for the subsequent report. Published studies evaluating this comprehensive CIDAA involved 104 poorly controlled patients taking insulin for greater than or equal to six months who were independently managed by PCCs. Over four to six months, initial HbA1c levels of 9.7% fell by 1.7%. Combining these results with 138 other better controlled patients in real-world situations, initial measured and estimated HbA1c levels of 8.3% fell by 0.7% in 6.4 months enabling PCCs to significantly improve glycemic control. Other advantages of PCCs utilizing these comprehensive CIDAAs are saving time for PCCs so that they can address non-diabetes issues and/or see other patients and ongoing PCC education in adjusting insulin doses by matching glucose patterns and dose-change recommendations with subsequent glycemic responses.</p>\",\"PeriodicalId\":15475,\"journal\":{\"name\":\"Journal of Diabetes Science and Technology\",\"volume\":\" \",\"pages\":\"19322968241306127\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664563/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19322968241306127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241306127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

初级保健临床医生(PCCs)管理着90%的糖尿病患者,其中30%需要胰岛素,由于PCCs面临的挑战(时间限制和缺乏经验),大量患者控制不佳。作者开发了美国联邦药物管理局(fda)批准和Conformite Europeenne注册的综合计算机化胰岛素剂量调整算法(CIDAAs),使PCCs能够显著降低需要胰岛素的患者的HbA1c水平。发送给PCC的报告包含葡萄糖读数的散点图,它们分为餐前、餐后和睡前的值,它们的分析,以及PCC可以接受或修改的胰岛素剂量调整建议(如果有指示)。葡萄糖读数提供给cidaa进行分析,无论是亲自访问或远程。PCCs接受的新剂量可作为后续报告的基础。已发表的评估这种综合CIDAA的研究纳入了104例控制不良的患者,这些患者服用胰岛素超过或等于6个月,由PCCs独立管理。在4到6个月的时间里,初始HbA1c水平下降了1.7%。将这些结果与现实世界中其他138例控制较好的患者相结合,初步测量和估计的HbA1c水平在6.4个月内下降了8.3%,使PCCs显着改善了血糖控制。PCCs利用这些综合cidaa的其他优点是节省了PCCs的时间,这样他们就可以解决非糖尿病问题和/或看其他患者,并通过将葡萄糖模式和剂量变化建议与随后的血糖反应相匹配来调整胰岛素剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effective Use by Primary Care Clinicians of a Comprehensive Computerized Insulin Dose Adjustment Algorithm.

Primary care clinicians (PCCs) manage 90% of patients with diabetes, 30% of whom require insulin with a substantial number poorly controlled because of the challenges that PCCs face (time constraints and lack of experience). The author has developed Federal Drug Administration cleared and Conformite Europeenne mark registered comprehensive computerized insulin dose adjustment algorithms (CIDAAs) to enable PCCs to significantly lower HbA1c levels in insulin-requiring patients. Reports sent to PCCs contain scatter plots of glucose readings, their organization into pre- and postprandial and before bedtime values, their analyses, and recommendations for insulin dose adjustments (if indicated) that the PCC can accept or modify. The glucose readings are provided to the CIDAAs for analysis at either in-person visits or remotely. The new doses accepted by PCCs serve as the basis for the subsequent report. Published studies evaluating this comprehensive CIDAA involved 104 poorly controlled patients taking insulin for greater than or equal to six months who were independently managed by PCCs. Over four to six months, initial HbA1c levels of 9.7% fell by 1.7%. Combining these results with 138 other better controlled patients in real-world situations, initial measured and estimated HbA1c levels of 8.3% fell by 0.7% in 6.4 months enabling PCCs to significantly improve glycemic control. Other advantages of PCCs utilizing these comprehensive CIDAAs are saving time for PCCs so that they can address non-diabetes issues and/or see other patients and ongoing PCC education in adjusting insulin doses by matching glucose patterns and dose-change recommendations with subsequent glycemic responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Diabetes Science and Technology
Journal of Diabetes Science and Technology Medicine-Internal Medicine
CiteScore
7.50
自引率
12.00%
发文量
148
期刊介绍: The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信