大豆突变系脂肪酸含量相关SNPs的全基因组关联研究。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jeong Woo Lee, Jung Min Kim, Dae June Kim, Ji Su Seo, Bo-Keun Ha, Soon-Jae Kwon
{"title":"大豆突变系脂肪酸含量相关SNPs的全基因组关联研究。","authors":"Jeong Woo Lee, Jung Min Kim, Dae June Kim, Ji Su Seo, Bo-Keun Ha, Soon-Jae Kwon","doi":"10.1007/s13258-024-01608-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vegetable oils are primarily composed of unsaturated fatty acids. Soybean [Glycine max (L.) Merr.] oil, accounting for 28% of the global production of vegetable oil, contains mainly two saturated fatty acids (palmitic acid and stearic acid) and three unsaturated fatty acids (oleic acid, linoleic acid, and linolenic acid) in seeds.</p><p><strong>Objective: </strong>The five fatty acids determine soybean oil quality. We aimed to identify genetic relationship between genomics and fatty acid contents in soybean mutant pool.</p><p><strong>Methods: </strong>This study used a mutant diversity pool (MDP) comprising 192 soybean lines. A genome-wide association study (GWAS) was conducted with the diverse fatty acid contents in MDP and 17,631 filtered SNPs from genotyping-by-sequencing (GBS).</p><p><strong>Results: </strong>The GWAS revealed nine significant SNPs within intragenic regions that were associated with fatty acid composition. These SNPs corresponded to six genes (Glyma.03g042500, Glyma.07g069200, Glyma.13g150200, Glyma.14g223100, Glyma.15g084700, and Glyma.15g274000), of which three (Glyma.03g042500, Glyma.13g150200, and Glyma.15g274000) were predicted to be candidate genes influencing oleic acid, linoleic acid, and linolenic acid contents. Analyses of SNP allelic effects revealed the largest and smallest significant differences in fatty acid contents were 5.53% (linolenic acid) and 0.4% (stearic acid), respectively.</p><p><strong>Conclusion: </strong>The present study detected significant phenotypic variations and genetic associations underlying the fatty acid composition of soybean seeds in MDP lines. The mutant seeds differed from the original cultivars in terms of fatty acids composition, with the allelic effects of significant SNPs influencing the fatty acid content in seeds. These findings may be useful for enhancing breeding strategies to optimize soybean oil quality for various uses.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of SNPs associated with fatty acid contents in mutant soybean lines by a genome-wide association study.\",\"authors\":\"Jeong Woo Lee, Jung Min Kim, Dae June Kim, Ji Su Seo, Bo-Keun Ha, Soon-Jae Kwon\",\"doi\":\"10.1007/s13258-024-01608-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Vegetable oils are primarily composed of unsaturated fatty acids. Soybean [Glycine max (L.) Merr.] oil, accounting for 28% of the global production of vegetable oil, contains mainly two saturated fatty acids (palmitic acid and stearic acid) and three unsaturated fatty acids (oleic acid, linoleic acid, and linolenic acid) in seeds.</p><p><strong>Objective: </strong>The five fatty acids determine soybean oil quality. We aimed to identify genetic relationship between genomics and fatty acid contents in soybean mutant pool.</p><p><strong>Methods: </strong>This study used a mutant diversity pool (MDP) comprising 192 soybean lines. A genome-wide association study (GWAS) was conducted with the diverse fatty acid contents in MDP and 17,631 filtered SNPs from genotyping-by-sequencing (GBS).</p><p><strong>Results: </strong>The GWAS revealed nine significant SNPs within intragenic regions that were associated with fatty acid composition. These SNPs corresponded to six genes (Glyma.03g042500, Glyma.07g069200, Glyma.13g150200, Glyma.14g223100, Glyma.15g084700, and Glyma.15g274000), of which three (Glyma.03g042500, Glyma.13g150200, and Glyma.15g274000) were predicted to be candidate genes influencing oleic acid, linoleic acid, and linolenic acid contents. Analyses of SNP allelic effects revealed the largest and smallest significant differences in fatty acid contents were 5.53% (linolenic acid) and 0.4% (stearic acid), respectively.</p><p><strong>Conclusion: </strong>The present study detected significant phenotypic variations and genetic associations underlying the fatty acid composition of soybean seeds in MDP lines. The mutant seeds differed from the original cultivars in terms of fatty acids composition, with the allelic effects of significant SNPs influencing the fatty acid content in seeds. These findings may be useful for enhancing breeding strategies to optimize soybean oil quality for various uses.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01608-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01608-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:植物油主要由不饱和脂肪酸组成。大豆[甘氨酸max (L.)]稳定。]油占全球植物油产量的28%,种子中主要含有两种饱和脂肪酸(棕榈酸和硬脂酸)和三种不饱和脂肪酸(油酸、亚油酸和亚麻酸)。目的:测定大豆油的五种脂肪酸含量。研究大豆突变体库中脂肪酸含量与基因组学的关系。方法利用包含192个大豆品系的突变体多样性库(MDP)进行研究。对MDP中不同脂肪酸含量和从基因分型测序(GBS)中筛选的17,631个snp进行了全基因组关联研究(GWAS)。结果:GWAS在基因内区域发现了9个与脂肪酸组成相关的显著snp。这些snp对应于6个基因(Glyma.03g042500、Glyma.07g069200、Glyma.13g150200、Glyma.14g223100、Glyma.15g084700和Glyma.15g274000),其中3个基因(Glyma.03g042500、Glyma.13g150200和Glyma.15g274000)被预测为影响油酸、亚油酸和亚麻酸含量的候选基因。SNP等位基因效应分析显示,脂肪酸含量差异最大和最小,分别为5.53%(亚麻酸)和0.4%(硬脂酸)。结论:本研究发现了MDP大豆种子脂肪酸组成的显着表型变异和遗传关联。突变体种子的脂肪酸组成与原品种不同,显著snp的等位基因效应影响了种子的脂肪酸含量。这些发现可能有助于改进育种策略,以优化各种用途的豆油品质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of SNPs associated with fatty acid contents in mutant soybean lines by a genome-wide association study.

Background: Vegetable oils are primarily composed of unsaturated fatty acids. Soybean [Glycine max (L.) Merr.] oil, accounting for 28% of the global production of vegetable oil, contains mainly two saturated fatty acids (palmitic acid and stearic acid) and three unsaturated fatty acids (oleic acid, linoleic acid, and linolenic acid) in seeds.

Objective: The five fatty acids determine soybean oil quality. We aimed to identify genetic relationship between genomics and fatty acid contents in soybean mutant pool.

Methods: This study used a mutant diversity pool (MDP) comprising 192 soybean lines. A genome-wide association study (GWAS) was conducted with the diverse fatty acid contents in MDP and 17,631 filtered SNPs from genotyping-by-sequencing (GBS).

Results: The GWAS revealed nine significant SNPs within intragenic regions that were associated with fatty acid composition. These SNPs corresponded to six genes (Glyma.03g042500, Glyma.07g069200, Glyma.13g150200, Glyma.14g223100, Glyma.15g084700, and Glyma.15g274000), of which three (Glyma.03g042500, Glyma.13g150200, and Glyma.15g274000) were predicted to be candidate genes influencing oleic acid, linoleic acid, and linolenic acid contents. Analyses of SNP allelic effects revealed the largest and smallest significant differences in fatty acid contents were 5.53% (linolenic acid) and 0.4% (stearic acid), respectively.

Conclusion: The present study detected significant phenotypic variations and genetic associations underlying the fatty acid composition of soybean seeds in MDP lines. The mutant seeds differed from the original cultivars in terms of fatty acids composition, with the allelic effects of significant SNPs influencing the fatty acid content in seeds. These findings may be useful for enhancing breeding strategies to optimize soybean oil quality for various uses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信