Junghyun Lee, Sevde Goker, Sookkyung Lim, Christian I Hong
{"title":"哺乳动物生理节律的发展。","authors":"Junghyun Lee, Sevde Goker, Sookkyung Lim, Christian I Hong","doi":"10.1042/BCJ20210060","DOIUrl":null,"url":null,"abstract":"<p><p>In mammals, molecular mechanisms of circadian rhythms involve a time-delayed negative feedback loop generating autonomous oscillations of ∼24 h. Most cell types in mammals possess circadian rhythms regulating temporal organization of cellular and physiological processes. Intriguingly, pluripotent stem cells do not possess circadian rhythms and oscillations arise after a defined period of differentiation. Previous studies demonstrated that post-transcriptional regulations of core clock components, CLOCK and PER2, play critical roles in inducing circadian rhythms. In this article, we review the development of circadian rhythms in mammalian systems and provide a theoretical understanding of potential mechanisms regulating the birth of circadian rhythms using mathematical modeling.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"481 24","pages":"1967-1976"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of circadian rhythms in mammalian systems.\",\"authors\":\"Junghyun Lee, Sevde Goker, Sookkyung Lim, Christian I Hong\",\"doi\":\"10.1042/BCJ20210060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In mammals, molecular mechanisms of circadian rhythms involve a time-delayed negative feedback loop generating autonomous oscillations of ∼24 h. Most cell types in mammals possess circadian rhythms regulating temporal organization of cellular and physiological processes. Intriguingly, pluripotent stem cells do not possess circadian rhythms and oscillations arise after a defined period of differentiation. Previous studies demonstrated that post-transcriptional regulations of core clock components, CLOCK and PER2, play critical roles in inducing circadian rhythms. In this article, we review the development of circadian rhythms in mammalian systems and provide a theoretical understanding of potential mechanisms regulating the birth of circadian rhythms using mathematical modeling.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\"481 24\",\"pages\":\"1967-1976\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20210060\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20210060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Development of circadian rhythms in mammalian systems.
In mammals, molecular mechanisms of circadian rhythms involve a time-delayed negative feedback loop generating autonomous oscillations of ∼24 h. Most cell types in mammals possess circadian rhythms regulating temporal organization of cellular and physiological processes. Intriguingly, pluripotent stem cells do not possess circadian rhythms and oscillations arise after a defined period of differentiation. Previous studies demonstrated that post-transcriptional regulations of core clock components, CLOCK and PER2, play critical roles in inducing circadian rhythms. In this article, we review the development of circadian rhythms in mammalian systems and provide a theoretical understanding of potential mechanisms regulating the birth of circadian rhythms using mathematical modeling.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling