{"title":"阿莫地喹类似物是识别病原体核酸的toll样受体激活诱导的白细胞介素-6产生的有效抑制剂。","authors":"Yohei Takenaka, Tomohiro Tanaka, Shotaro Otaki, Azusa Kanbe, Tomoe Morita, Kenta Yokoi, Saki Sekiguchi, Koki Nakamura, Hidetoshi Satoh, Toshifumi Tojo, Fumiaki Uchiumi, Kazuki Kitabatake, Shin Aoki, Mitsutoshi Tsukimoto","doi":"10.1248/bpb.b24-00639","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro. In J774.1 murine macrophages, ADQ inhibited interleukin-6 (IL-6) production induced by TLR3 agonist poly(I:C), TLR7 agonist imiquimod, and TLR9 agonist cytosine-phosphate-guanosine oligodeoxynucleotide (CpG ODN) with IC<sub>50</sub> values of 2.43, 3.48, and 0.0359 µM, respectively, indicating that ADQ has a high inhibitory selectivity for TLR9 signaling. A structure-activity relationship study revealed that an appropriately substituted amino group on the phenol moiety and a halogen substituent on quinoline are important for potent anti-inflammatory activity and low cytotoxicity. ADQ analogs bearing N-butylethyl, N-3-fluoropiperidinyl, and N-4-fluoropiperidinyl groups in place of the N-diethyl group exhibited more potent activity and lower cytotoxicity than ADQ. ADQ and its analogs appear to inhibit the activity of TLRs recognizing pathogen nucleic acids via alkalinization of endolysosomes. Our results suggest that ADQ analogs are promising candidates as therapeutic agents for cytokine storms mediated by TLRs recognizing pathogen nucleic acid with reduced side effects.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 12","pages":"2101-2118"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amodiaquine Analogs Are Potent Inhibitors of Interleukin-6 Production Induced by Activation of Toll-Like Receptors Recognizing Pathogen Nucleic Acids.\",\"authors\":\"Yohei Takenaka, Tomohiro Tanaka, Shotaro Otaki, Azusa Kanbe, Tomoe Morita, Kenta Yokoi, Saki Sekiguchi, Koki Nakamura, Hidetoshi Satoh, Toshifumi Tojo, Fumiaki Uchiumi, Kazuki Kitabatake, Shin Aoki, Mitsutoshi Tsukimoto\",\"doi\":\"10.1248/bpb.b24-00639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro. In J774.1 murine macrophages, ADQ inhibited interleukin-6 (IL-6) production induced by TLR3 agonist poly(I:C), TLR7 agonist imiquimod, and TLR9 agonist cytosine-phosphate-guanosine oligodeoxynucleotide (CpG ODN) with IC<sub>50</sub> values of 2.43, 3.48, and 0.0359 µM, respectively, indicating that ADQ has a high inhibitory selectivity for TLR9 signaling. A structure-activity relationship study revealed that an appropriately substituted amino group on the phenol moiety and a halogen substituent on quinoline are important for potent anti-inflammatory activity and low cytotoxicity. ADQ analogs bearing N-butylethyl, N-3-fluoropiperidinyl, and N-4-fluoropiperidinyl groups in place of the N-diethyl group exhibited more potent activity and lower cytotoxicity than ADQ. ADQ and its analogs appear to inhibit the activity of TLRs recognizing pathogen nucleic acids via alkalinization of endolysosomes. Our results suggest that ADQ analogs are promising candidates as therapeutic agents for cytokine storms mediated by TLRs recognizing pathogen nucleic acid with reduced side effects.</p>\",\"PeriodicalId\":8955,\"journal\":{\"name\":\"Biological & pharmaceutical bulletin\",\"volume\":\"47 12\",\"pages\":\"2101-2118\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological & pharmaceutical bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1248/bpb.b24-00639\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00639","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Amodiaquine Analogs Are Potent Inhibitors of Interleukin-6 Production Induced by Activation of Toll-Like Receptors Recognizing Pathogen Nucleic Acids.
Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro. In J774.1 murine macrophages, ADQ inhibited interleukin-6 (IL-6) production induced by TLR3 agonist poly(I:C), TLR7 agonist imiquimod, and TLR9 agonist cytosine-phosphate-guanosine oligodeoxynucleotide (CpG ODN) with IC50 values of 2.43, 3.48, and 0.0359 µM, respectively, indicating that ADQ has a high inhibitory selectivity for TLR9 signaling. A structure-activity relationship study revealed that an appropriately substituted amino group on the phenol moiety and a halogen substituent on quinoline are important for potent anti-inflammatory activity and low cytotoxicity. ADQ analogs bearing N-butylethyl, N-3-fluoropiperidinyl, and N-4-fluoropiperidinyl groups in place of the N-diethyl group exhibited more potent activity and lower cytotoxicity than ADQ. ADQ and its analogs appear to inhibit the activity of TLRs recognizing pathogen nucleic acids via alkalinization of endolysosomes. Our results suggest that ADQ analogs are promising candidates as therapeutic agents for cytokine storms mediated by TLRs recognizing pathogen nucleic acid with reduced side effects.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.