水合条件是抗生素介导的细菌竞争结果的关键因素。

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Applied and Environmental Microbiology Pub Date : 2025-01-31 Epub Date: 2024-12-23 DOI:10.1128/aem.02004-24
Yana Beizman-Magen, Tomer Orevi, Nadav Kashtan
{"title":"水合条件是抗生素介导的细菌竞争结果的关键因素。","authors":"Yana Beizman-Magen, Tomer Orevi, Nadav Kashtan","doi":"10.1128/aem.02004-24","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic secretion plays a pivotal role in bacterial interference competition; yet, the impact of environmental hydration conditions on such competition is not well understood. Here, we investigate how hydration conditions affect interference competition among bacteria, studying the interactions between the antibiotic-producing <i>Bacillus velezensis</i> FZB42 and two bacterial strains susceptible to its antibiotics: <i>Xanthomonas euvesicatoria</i> 85-10 and <i>Pseudomonas syringae</i> DC3000. Our results show that wet-dry cycles significantly modify the response of the susceptible bacteria to both the supernatant and cells of the antibiotic-producing bacteria, compared to constantly wet conditions. Notably<i>, X. euvesicatoria</i> shows increased protection against both the cells and supernatants of <i>B. velezensis</i> under wet-dry cycles, while <i>P. syringae</i> cells become more susceptible under wet-dry cycles. In addition, we observed a reciprocal interaction between <i>P. syringae</i> and <i>B. velezensis</i>, where <i>P. syringae</i> inhibits <i>B. velezensis</i> under wet conditions. Our findings highlight the important role of hydration conditions in shaping bacterial interference competition, providing valuable insights into the microbial ecology of water-unsaturated surfaces, with implications for applications such as biological control of plant pathogens and mitigating antibiotic resistance.IMPORTANCEOur study reveals that hydration conditions, particularly wet-dry cycles, significantly influence antibiotic-mediated competition between bacterial species. We revealed that the effectiveness of antibiotics produced by <i>Bacillus velezensis</i> against two susceptible bacterial species: <i>Xanthomonas</i> and <i>Pseudomonas</i> varies based on these hydration conditions. Unlike traditional laboratory environments, many real-world habitats, such as soil, plant surfaces, and even animal skin, undergo frequent wet-dry cycles. These conditions affect bacterial competition dynamics and outcomes, with wet-dry cycles providing increased protection for some bacteria while making others more susceptible. Our findings highlight the importance of considering environmental hydration when studying microbial interactions and developing biological control strategies. This research has important implications for improving agricultural practices and understanding natural microbial ecosystems.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0200424"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784440/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hydration conditions as a critical factor in antibiotic-mediated bacterial competition outcomes.\",\"authors\":\"Yana Beizman-Magen, Tomer Orevi, Nadav Kashtan\",\"doi\":\"10.1128/aem.02004-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic secretion plays a pivotal role in bacterial interference competition; yet, the impact of environmental hydration conditions on such competition is not well understood. Here, we investigate how hydration conditions affect interference competition among bacteria, studying the interactions between the antibiotic-producing <i>Bacillus velezensis</i> FZB42 and two bacterial strains susceptible to its antibiotics: <i>Xanthomonas euvesicatoria</i> 85-10 and <i>Pseudomonas syringae</i> DC3000. Our results show that wet-dry cycles significantly modify the response of the susceptible bacteria to both the supernatant and cells of the antibiotic-producing bacteria, compared to constantly wet conditions. Notably<i>, X. euvesicatoria</i> shows increased protection against both the cells and supernatants of <i>B. velezensis</i> under wet-dry cycles, while <i>P. syringae</i> cells become more susceptible under wet-dry cycles. In addition, we observed a reciprocal interaction between <i>P. syringae</i> and <i>B. velezensis</i>, where <i>P. syringae</i> inhibits <i>B. velezensis</i> under wet conditions. Our findings highlight the important role of hydration conditions in shaping bacterial interference competition, providing valuable insights into the microbial ecology of water-unsaturated surfaces, with implications for applications such as biological control of plant pathogens and mitigating antibiotic resistance.IMPORTANCEOur study reveals that hydration conditions, particularly wet-dry cycles, significantly influence antibiotic-mediated competition between bacterial species. We revealed that the effectiveness of antibiotics produced by <i>Bacillus velezensis</i> against two susceptible bacterial species: <i>Xanthomonas</i> and <i>Pseudomonas</i> varies based on these hydration conditions. Unlike traditional laboratory environments, many real-world habitats, such as soil, plant surfaces, and even animal skin, undergo frequent wet-dry cycles. These conditions affect bacterial competition dynamics and outcomes, with wet-dry cycles providing increased protection for some bacteria while making others more susceptible. Our findings highlight the importance of considering environmental hydration when studying microbial interactions and developing biological control strategies. This research has important implications for improving agricultural practices and understanding natural microbial ecosystems.</p>\",\"PeriodicalId\":8002,\"journal\":{\"name\":\"Applied and Environmental Microbiology\",\"volume\":\" \",\"pages\":\"e0200424\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Environmental Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/aem.02004-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02004-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗生素分泌在细菌干扰竞争中起关键作用;然而,环境水化条件对这种竞争的影响尚不清楚。在这里,我们研究了水合条件如何影响细菌之间的干扰竞争,研究了产生抗生素的velezensis芽孢杆菌FZB42与两株对其抗生素敏感的细菌:euvesicatoria黄单胞菌85-10和丁香假单胞菌DC3000之间的相互作用。我们的研究结果表明,与持续潮湿的条件相比,干湿循环显著改变了敏感细菌对上清和产生抗生素的细菌细胞的反应。值得注意的是,在干湿循环下,鲜叶假单胞菌对白僵菌的细胞和上清液的保护作用增强,而丁香假单胞菌对干湿循环的保护作用增强。此外,我们还观察到丁香假单胞菌和白僵菌之间的相互作用,其中丁香假单胞菌在潮湿条件下抑制白僵菌。我们的研究结果强调了水合条件在形成细菌干扰竞争中的重要作用,为水不饱和表面的微生物生态提供了有价值的见解,对植物病原体的生物控制和减轻抗生素耐药性等应用具有重要意义。我们的研究揭示了水化条件,特别是干湿循环,显著影响了细菌物种之间抗生素介导的竞争。我们发现,velezensis芽孢杆菌产生的抗生素对两种敏感细菌:黄单胞菌和假单胞菌的有效性取决于这些水化条件。与传统的实验室环境不同,许多现实世界的栖息地,如土壤、植物表面,甚至动物皮肤,都经历了频繁的干湿循环。这些条件影响细菌竞争动态和结果,干湿循环为一些细菌提供了更多的保护,同时使其他细菌更容易受到影响。我们的研究结果强调了在研究微生物相互作用和制定生物控制策略时考虑环境水合作用的重要性。该研究对改善农业实践和理解自然微生物生态系统具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydration conditions as a critical factor in antibiotic-mediated bacterial competition outcomes.

Antibiotic secretion plays a pivotal role in bacterial interference competition; yet, the impact of environmental hydration conditions on such competition is not well understood. Here, we investigate how hydration conditions affect interference competition among bacteria, studying the interactions between the antibiotic-producing Bacillus velezensis FZB42 and two bacterial strains susceptible to its antibiotics: Xanthomonas euvesicatoria 85-10 and Pseudomonas syringae DC3000. Our results show that wet-dry cycles significantly modify the response of the susceptible bacteria to both the supernatant and cells of the antibiotic-producing bacteria, compared to constantly wet conditions. Notably, X. euvesicatoria shows increased protection against both the cells and supernatants of B. velezensis under wet-dry cycles, while P. syringae cells become more susceptible under wet-dry cycles. In addition, we observed a reciprocal interaction between P. syringae and B. velezensis, where P. syringae inhibits B. velezensis under wet conditions. Our findings highlight the important role of hydration conditions in shaping bacterial interference competition, providing valuable insights into the microbial ecology of water-unsaturated surfaces, with implications for applications such as biological control of plant pathogens and mitigating antibiotic resistance.IMPORTANCEOur study reveals that hydration conditions, particularly wet-dry cycles, significantly influence antibiotic-mediated competition between bacterial species. We revealed that the effectiveness of antibiotics produced by Bacillus velezensis against two susceptible bacterial species: Xanthomonas and Pseudomonas varies based on these hydration conditions. Unlike traditional laboratory environments, many real-world habitats, such as soil, plant surfaces, and even animal skin, undergo frequent wet-dry cycles. These conditions affect bacterial competition dynamics and outcomes, with wet-dry cycles providing increased protection for some bacteria while making others more susceptible. Our findings highlight the importance of considering environmental hydration when studying microbial interactions and developing biological control strategies. This research has important implications for improving agricultural practices and understanding natural microbial ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信