探索II型ZnIn2S4/CoFe2S4复合材料光催化水裂解的光热效应。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-04-01 Epub Date: 2024-12-18 DOI:10.1016/j.jcis.2024.12.137
Gege He, Junsheng Wang, Xiaozhen Lv, Shun Lu
{"title":"探索II型ZnIn2S4/CoFe2S4复合材料光催化水裂解的光热效应。","authors":"Gege He, Junsheng Wang, Xiaozhen Lv, Shun Lu","doi":"10.1016/j.jcis.2024.12.137","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen is increasingly acknowledged as a viable alternative to traditional fossil fuels. However, the photothermal properties of CoFe<sub>2</sub>S<sub>4</sub>, a photocatalyst displaying metal-like behavior, have not been adequately explored in the context of photocatalytic H<sub>2</sub> generation. To improve photocatalytic hydrogen evolution, it is crucial to understand how to expedite the transfer of photogenerated electrons and the dissociation of H-OH bonds for enhanced hydrogen ion release. Herein, a type-II heterostructure was constructed between CoFe<sub>2</sub>S<sub>4</sub> nanosheets and ZnIn<sub>2</sub>S<sub>4</sub> nanoparticles, a non-precious metal photocatalyst, which effectively separates photogenerated carriers and holes. More importantly, the photothermal effect and localized surface plasmon resonance (LSPR) effects induced by CoFe<sub>2</sub>S<sub>4</sub> improved the sluggish kinetics of water dissociation. The CoFe<sub>2</sub>S<sub>4</sub>/ZnIn<sub>2</sub>S<sub>4</sub>-5 photocatalyst achieved H<sub>2</sub> evolution rate of 6.84 mmol·g<sup>-1</sup>·h<sup>-1</sup>, and an apparent quantum efficiency of 15.6 % at 400 nm, significantly enhancing the efficiency of photocatalytic splitting for hydrogen production. This work advances the application of metal CoFe<sub>2</sub>S<sub>4</sub> in solar-to-fuel conversion and offers valuable insights for designing semiconductor-based photothermally assisted photocatalytic systems.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"901-909"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the photothermal effect in the photocatalytic water splitting over Type II ZnIn<sub>2</sub>S<sub>4</sub>/CoFe<sub>2</sub>S<sub>4</sub> composites.\",\"authors\":\"Gege He, Junsheng Wang, Xiaozhen Lv, Shun Lu\",\"doi\":\"10.1016/j.jcis.2024.12.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogen is increasingly acknowledged as a viable alternative to traditional fossil fuels. However, the photothermal properties of CoFe<sub>2</sub>S<sub>4</sub>, a photocatalyst displaying metal-like behavior, have not been adequately explored in the context of photocatalytic H<sub>2</sub> generation. To improve photocatalytic hydrogen evolution, it is crucial to understand how to expedite the transfer of photogenerated electrons and the dissociation of H-OH bonds for enhanced hydrogen ion release. Herein, a type-II heterostructure was constructed between CoFe<sub>2</sub>S<sub>4</sub> nanosheets and ZnIn<sub>2</sub>S<sub>4</sub> nanoparticles, a non-precious metal photocatalyst, which effectively separates photogenerated carriers and holes. More importantly, the photothermal effect and localized surface plasmon resonance (LSPR) effects induced by CoFe<sub>2</sub>S<sub>4</sub> improved the sluggish kinetics of water dissociation. The CoFe<sub>2</sub>S<sub>4</sub>/ZnIn<sub>2</sub>S<sub>4</sub>-5 photocatalyst achieved H<sub>2</sub> evolution rate of 6.84 mmol·g<sup>-1</sup>·h<sup>-1</sup>, and an apparent quantum efficiency of 15.6 % at 400 nm, significantly enhancing the efficiency of photocatalytic splitting for hydrogen production. This work advances the application of metal CoFe<sub>2</sub>S<sub>4</sub> in solar-to-fuel conversion and offers valuable insights for designing semiconductor-based photothermally assisted photocatalytic systems.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"683 Pt 1\",\"pages\":\"901-909\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.137\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.137","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢越来越被认为是传统化石燃料的可行替代品。然而,CoFe2S4(一种具有金属样行为的光催化剂)的光热性质在光催化制氢方面还没有得到充分的研究。为了改善光催化析氢,了解如何加速光生电子的转移和H-OH键的解离以促进氢离子的释放是至关重要的。本文在CoFe2S4纳米片与非贵金属光催化剂ZnIn2S4纳米片之间构建了ii型异质结构,有效地分离了光生载流子和空穴。更重要的是,CoFe2S4诱导的光热效应和局部表面等离子体共振(LSPR)效应改善了水的缓慢解离动力学。CoFe2S4/ZnIn2S4-5光催化剂在400 nm处的析氢速率为6.84 mmol·g-1·h-1,表观量子效率为15.6%,显著提高了光催化裂解制氢的效率。这项工作推进了金属CoFe2S4在太阳能-燃料转换中的应用,并为设计基于半导体的光热辅助光催化系统提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the photothermal effect in the photocatalytic water splitting over Type II ZnIn2S4/CoFe2S4 composites.

Hydrogen is increasingly acknowledged as a viable alternative to traditional fossil fuels. However, the photothermal properties of CoFe2S4, a photocatalyst displaying metal-like behavior, have not been adequately explored in the context of photocatalytic H2 generation. To improve photocatalytic hydrogen evolution, it is crucial to understand how to expedite the transfer of photogenerated electrons and the dissociation of H-OH bonds for enhanced hydrogen ion release. Herein, a type-II heterostructure was constructed between CoFe2S4 nanosheets and ZnIn2S4 nanoparticles, a non-precious metal photocatalyst, which effectively separates photogenerated carriers and holes. More importantly, the photothermal effect and localized surface plasmon resonance (LSPR) effects induced by CoFe2S4 improved the sluggish kinetics of water dissociation. The CoFe2S4/ZnIn2S4-5 photocatalyst achieved H2 evolution rate of 6.84 mmol·g-1·h-1, and an apparent quantum efficiency of 15.6 % at 400 nm, significantly enhancing the efficiency of photocatalytic splitting for hydrogen production. This work advances the application of metal CoFe2S4 in solar-to-fuel conversion and offers valuable insights for designing semiconductor-based photothermally assisted photocatalytic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信