{"title":"应用计算机视觉算法解决工业生产中的烟雾检测问题","authors":"G. Algashev, A. Kupriyanov","doi":"10.3103/S1060992X24700553","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an approach for detecting smoke in industrial production using computer vision. The task of detecting smoke and fire can be framed as a detection problem, making modern convolutional neural network models well-suited for this task. The main issues of detection in industrial production are considered, and solutions to these problems are proposed. In the study, the Faster R-CNN, MobileNet SSD v2, and YOLOv8 models were trained and tested in combination with various image preprocessing algorithms. The best result was achieved by the YOLOv8 model combined with the adaptive histogram equalization algorithm for image preprocessing, showing a precision value of 80.1%. As a result, it was demonstrated that deep convolutional networks are well-suited for the task of detecting smoke and fire. Additionally, the main problems and solutions for preparing data for training deep convolutional models were explored.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2 supplement","pages":"S270 - S276"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Computer Vision Algorithms to Solve the Problem of Smoke Detection in Industrial Production\",\"authors\":\"G. Algashev, A. Kupriyanov\",\"doi\":\"10.3103/S1060992X24700553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes an approach for detecting smoke in industrial production using computer vision. The task of detecting smoke and fire can be framed as a detection problem, making modern convolutional neural network models well-suited for this task. The main issues of detection in industrial production are considered, and solutions to these problems are proposed. In the study, the Faster R-CNN, MobileNet SSD v2, and YOLOv8 models were trained and tested in combination with various image preprocessing algorithms. The best result was achieved by the YOLOv8 model combined with the adaptive histogram equalization algorithm for image preprocessing, showing a precision value of 80.1%. As a result, it was demonstrated that deep convolutional networks are well-suited for the task of detecting smoke and fire. Additionally, the main problems and solutions for preparing data for training deep convolutional models were explored.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"33 2 supplement\",\"pages\":\"S270 - S276\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1060992X24700553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Application of Computer Vision Algorithms to Solve the Problem of Smoke Detection in Industrial Production
This paper proposes an approach for detecting smoke in industrial production using computer vision. The task of detecting smoke and fire can be framed as a detection problem, making modern convolutional neural network models well-suited for this task. The main issues of detection in industrial production are considered, and solutions to these problems are proposed. In the study, the Faster R-CNN, MobileNet SSD v2, and YOLOv8 models were trained and tested in combination with various image preprocessing algorithms. The best result was achieved by the YOLOv8 model combined with the adaptive histogram equalization algorithm for image preprocessing, showing a precision value of 80.1%. As a result, it was demonstrated that deep convolutional networks are well-suited for the task of detecting smoke and fire. Additionally, the main problems and solutions for preparing data for training deep convolutional models were explored.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.